Merge branch 'main' into upt

This commit is contained in:
lllyasviel 2024-02-11 16:42:36 -08:00 committed by GitHub
commit 30c8d742b3
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
1005 changed files with 154843 additions and 3044 deletions

View File

@ -1,4 +1,5 @@
extensions
extensions-disabled
extensions-builtin/sd_forge_controlnet
repositories
venv

View File

@ -4,9 +4,12 @@ on:
- push
- pull_request
env:
FORGE_CQ_TEST: "True"
jobs:
test:
name: tests on CPU with empty model
name: tests on CPU
runs-on: ubuntu-latest
if: github.event_name != 'pull_request' || github.event.pull_request.head.repo.full_name != github.event.pull_request.base.repo.full_name
steps:
@ -41,6 +44,29 @@ jobs:
PYTHONUNBUFFERED: "1"
- name: Print installed packages
run: pip freeze
- name: Download models
run: |
declare -a urls=(
"https://huggingface.co/lllyasviel/fav_models/resolve/main/fav/realisticVisionV51_v51VAE.safetensors"
)
for url in "${urls[@]}"; do
filename="models/Stable-diffusion/${url##*/}" # Extracts the last part of the URL
if [ ! -f "$filename" ]; then
curl -Lo "$filename" "$url"
fi
done
# - name: Download ControlNet models
# run: |
# declare -a urls=(
# "https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11p_sd15_canny.pth"
# )
# for url in "${urls[@]}"; do
# filename="models/ControlNet/${url##*/}" # Extracts the last part of the URL
# if [ ! -f "$filename" ]; then
# curl -Lo "$filename" "$url"
# fi
# done
- name: Start test server
run: >
python -m coverage run
@ -52,30 +78,30 @@ jobs:
--do-not-download-clip
--no-half
--disable-opt-split-attention
--use-cpu all
--always-cpu
--api-server-stop
--ckpt models/Stable-diffusion/realisticVisionV51_v51VAE.safetensors
2>&1 | tee output.txt &
- name: Run tests
run: |
wait-for-it --service 127.0.0.1:7860 -t 20
python -m pytest -vv --junitxml=test/results.xml --cov . --cov-report=xml --verify-base-url test
# TODO(huchenlei): Enable ControlNet tests. Currently it is too slow to run these tests on CPU with
# real SD model. We need to find a way to load empty SD model.
# - name: Run ControlNet tests
# run: >
# python -m pytest
# --junitxml=test/results.xml
# --cov ./extensions-builtin/sd_forge_controlnet
# --cov-report=xml
# --verify-base-url
# ./extensions-builtin/sd_forge_controlnet/tests
- name: Kill test server
if: always()
run: curl -vv -XPOST http://127.0.0.1:7860/sdapi/v1/server-stop && sleep 10
- name: Show coverage
run: |
python -m coverage combine .coverage*
python -m coverage report -i
python -m coverage html -i
- name: Upload main app output
uses: actions/upload-artifact@v3
if: always()
with:
name: output
path: output.txt
- name: Upload coverage HTML
uses: actions/upload-artifact@v3
if: always()
with:
name: htmlcov
path: htmlcov

3
.gitignore vendored
View File

@ -39,3 +39,6 @@ notification.mp3
/package-lock.json
/.coverage*
/test/test_outputs
/test/results.xml
coverage.xml
**/tests/**/expectations

View File

@ -1,12 +1 @@
* @AUTOMATIC1111
# if you were managing a localization and were removed from this file, this is because
# the intended way to do localizations now is via extensions. See:
# https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Developing-extensions
# Make a repo with your localization and since you are still listed as a collaborator
# you can add it to the wiki page yourself. This change is because some people complained
# the git commit log is cluttered with things unrelated to almost everyone and
# because I believe this is the best overall for the project to handle localizations almost
# entirely without my oversight.
* @lllyasviel

842
README.md
View File

@ -1,182 +1,694 @@
# Stable Diffusion web UI
A web interface for Stable Diffusion, implemented using Gradio library.
# Stable Diffusion WebUI Forge
![](screenshot.png)
Stable Diffusion WebUI Forge is a platform on top of [Stable Diffusion WebUI](https://github.com/AUTOMATIC1111/stable-diffusion-webui) (based on [Gradio](https://www.gradio.app/)) to make development easier, optimize resource management, and speed up inference.
## Features
[Detailed feature showcase with images](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features):
- Original txt2img and img2img modes
- One click install and run script (but you still must install python and git)
- Outpainting
- Inpainting
- Color Sketch
- Prompt Matrix
- Stable Diffusion Upscale
- Attention, specify parts of text that the model should pay more attention to
- a man in a `((tuxedo))` - will pay more attention to tuxedo
- a man in a `(tuxedo:1.21)` - alternative syntax
- select text and press `Ctrl+Up` or `Ctrl+Down` (or `Command+Up` or `Command+Down` if you're on a MacOS) to automatically adjust attention to selected text (code contributed by anonymous user)
- Loopback, run img2img processing multiple times
- X/Y/Z plot, a way to draw a 3 dimensional plot of images with different parameters
- Textual Inversion
- have as many embeddings as you want and use any names you like for them
- use multiple embeddings with different numbers of vectors per token
- works with half precision floating point numbers
- train embeddings on 8GB (also reports of 6GB working)
- Extras tab with:
- GFPGAN, neural network that fixes faces
- CodeFormer, face restoration tool as an alternative to GFPGAN
- RealESRGAN, neural network upscaler
- ESRGAN, neural network upscaler with a lot of third party models
- SwinIR and Swin2SR ([see here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/2092)), neural network upscalers
- LDSR, Latent diffusion super resolution upscaling
- Resizing aspect ratio options
- Sampling method selection
- Adjust sampler eta values (noise multiplier)
- More advanced noise setting options
- Interrupt processing at any time
- 4GB video card support (also reports of 2GB working)
- Correct seeds for batches
- Live prompt token length validation
- Generation parameters
- parameters you used to generate images are saved with that image
- in PNG chunks for PNG, in EXIF for JPEG
- can drag the image to PNG info tab to restore generation parameters and automatically copy them into UI
- can be disabled in settings
- drag and drop an image/text-parameters to promptbox
- Read Generation Parameters Button, loads parameters in promptbox to UI
- Settings page
- Running arbitrary python code from UI (must run with `--allow-code` to enable)
- Mouseover hints for most UI elements
- Possible to change defaults/mix/max/step values for UI elements via text config
- Tiling support, a checkbox to create images that can be tiled like textures
- Progress bar and live image generation preview
- Can use a separate neural network to produce previews with almost none VRAM or compute requirement
- Negative prompt, an extra text field that allows you to list what you don't want to see in generated image
- Styles, a way to save part of prompt and easily apply them via dropdown later
- Variations, a way to generate same image but with tiny differences
- Seed resizing, a way to generate same image but at slightly different resolution
- CLIP interrogator, a button that tries to guess prompt from an image
- Prompt Editing, a way to change prompt mid-generation, say to start making a watermelon and switch to anime girl midway
- Batch Processing, process a group of files using img2img
- Img2img Alternative, reverse Euler method of cross attention control
- Highres Fix, a convenience option to produce high resolution pictures in one click without usual distortions
- Reloading checkpoints on the fly
- Checkpoint Merger, a tab that allows you to merge up to 3 checkpoints into one
- [Custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts) with many extensions from community
- [Composable-Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/), a way to use multiple prompts at once
- separate prompts using uppercase `AND`
- also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2`
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens)
- DeepDanbooru integration, creates danbooru style tags for anime prompts
- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add `--xformers` to commandline args)
- via extension: [History tab](https://github.com/yfszzx/stable-diffusion-webui-images-browser): view, direct and delete images conveniently within the UI
- Generate forever option
- Training tab
- hypernetworks and embeddings options
- Preprocessing images: cropping, mirroring, autotagging using BLIP or deepdanbooru (for anime)
- Clip skip
- Hypernetworks
- Loras (same as Hypernetworks but more pretty)
- A separate UI where you can choose, with preview, which embeddings, hypernetworks or Loras to add to your prompt
- Can select to load a different VAE from settings screen
- Estimated completion time in progress bar
- API
- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML
- via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embeds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients))
- [Stable Diffusion 2.0](https://github.com/Stability-AI/stablediffusion) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20) for instructions
- [Alt-Diffusion](https://arxiv.org/abs/2211.06679) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#alt-diffusion) for instructions
- Now without any bad letters!
- Load checkpoints in safetensors format
- Eased resolution restriction: generated image's dimensions must be a multiple of 8 rather than 64
- Now with a license!
- Reorder elements in the UI from settings screen
- [Segmind Stable Diffusion](https://huggingface.co/segmind/SSD-1B) support
The name "Forge" is inspired from "Minecraft Forge". This project is aimed at becoming SD WebUI's Forge.
## Installation and Running
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for:
- [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended)
- [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
- [Intel CPUs, Intel GPUs (both integrated and discrete)](https://github.com/openvinotoolkit/stable-diffusion-webui/wiki/Installation-on-Intel-Silicon) (external wiki page)
Compared to original WebUI (for SDXL inference at 1024px), you can expect the below speed-ups:
Alternatively, use online services (like Google Colab):
1. If you use common GPU like 8GB vram, you can expect to get about **30~45% speed up** in inference speed (it/s), the GPU memory peak (in task manager) will drop about 700MB to 1.3GB, the maximum diffusion resolution (that will not OOM) will increase about 2x to 3x, and the maximum diffusion batch size (that will not OOM) will increase about 4x to 6x.
- [List of Online Services](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Online-Services)
2. If you use less powerful GPU like 6GB vram, you can expect to get about **60~75% speed up** in inference speed (it/s), the GPU memory peak (in task manager) will drop about 800MB to 1.5GB, the maximum diffusion resolution (that will not OOM) will increase about 3x, and the maximum diffusion batch size (that will not OOM) will increase about 4x.
### Installation on Windows 10/11 with NVidia-GPUs using release package
1. Download `sd.webui.zip` from [v1.0.0-pre](https://github.com/AUTOMATIC1111/stable-diffusion-webui/releases/tag/v1.0.0-pre) and extract its contents.
2. Run `update.bat`.
3. Run `run.bat`.
> For more details see [Install-and-Run-on-NVidia-GPUs](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs)
3. If you use powerful GPU like 4090 with 24GB vram, you can expect to get about **3~6% speed up** in inference speed (it/s), the GPU memory peak (in task manager) will drop about 1GB to 1.4GB, the maximum diffusion resolution (that will not OOM) will increase about 1.6x, and the maximum diffusion batch size (that will not OOM) will increase about 2x.
### Automatic Installation on Windows
1. Install [Python 3.10.6](https://www.python.org/downloads/release/python-3106/) (Newer version of Python does not support torch), checking "Add Python to PATH".
2. Install [git](https://git-scm.com/download/win).
3. Download the stable-diffusion-webui repository, for example by running `git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git`.
4. Run `webui-user.bat` from Windows Explorer as normal, non-administrator, user.
4. If you use ControlNet for SDXL, the maximum ControlNet count (that will not OOM) will increase about 2x, the speed with SDXL+ControlNet will **speed up about 30~45%**.
### Automatic Installation on Linux
1. Install the dependencies:
```bash
# Debian-based:
sudo apt install wget git python3 python3-venv libgl1 libglib2.0-0
# Red Hat-based:
sudo dnf install wget git python3 gperftools-libs libglvnd-glx
# openSUSE-based:
sudo zypper install wget git python3 libtcmalloc4 libglvnd
# Arch-based:
sudo pacman -S wget git python3
Another very important change that Forge brings is **Unet Patcher**. Using Unet Patcher, methods like Self-Attention Guidance, Kohya High Res Fix, FreeU, StyleAlign, Hypertile can all be implemented in about 100 lines of codes.
Thanks to Unet Patcher, many new things are possible now and supported in Forge, including SVD, Z123, masked Ip-adapter, masked controlnet, photomaker, etc.
**No need to monkeypatch UNet and conflict other extensions anymore!**
Forge also adds a few samplers, including but not limited to DDPM, DDPM Karras, DPM++ 2M Turbo, DPM++ 2M SDE Turbo, LCM Karras, Euler A Turbo, etc. (LCM is already in original webui since 1.7.0).
Finally, Forge promise that we will only do our jobs. Forge will never add unnecessary opinioned changes to the user interface. You are still using 100% Automatic1111 WebUI.
# Installing Forge
If you know what you are doing, you can install Forge using same method as SD-WebUI. (Install Git, Python, Git Clone the forge repo `https://github.com/lllyasviel/stable-diffusion-webui-forge.git` and then run webui-user.bat).
**Or you can just use this one-click installation package (with git and python included).**
[>>> Click Here to Download One-Click Package<<<](https://github.com/lllyasviel/stable-diffusion-webui-forge/releases/download/latest/webui_forge_cu121_torch21.7z)
After you download, you uncompress, use `update.bat` to update, and use `run.bat` to run.
Note that running `update.bat` is important, otherwise you may be using a previous version with potential bugs unfixed.
![image](https://github.com/lllyasviel/stable-diffusion-webui-forge/assets/19834515/c49bd60d-82bd-4086-9859-88d472582b94)
# Screenshots of Comparison
I tested with several devices, and this is a typical result from 8GB VRAM (3070ti laptop) with SDXL.
**This is original WebUI:**
![image](https://github.com/lllyasviel/stable-diffusion-webui-forge/assets/19834515/16893937-9ed9-4f8e-b960-70cd5d1e288f)
![image](https://github.com/lllyasviel/stable-diffusion-webui-forge/assets/19834515/7bbc16fe-64ef-49e2-a595-d91bb658bd94)
![image](https://github.com/lllyasviel/stable-diffusion-webui-forge/assets/19834515/de1747fd-47bc-482d-a5c6-0728dd475943)
![image](https://github.com/lllyasviel/stable-diffusion-webui-forge/assets/19834515/96e5e171-2d74-41ba-9dcc-11bf68be7e16)
(average about 7.4GB/8GB, peak at about 7.9GB/8GB)
**This is WebUI Forge:**
![image](https://github.com/lllyasviel/stable-diffusion-webui-forge/assets/19834515/ca5e05ed-bd86-4ced-8662-f41034648e8c)
![image](https://github.com/lllyasviel/stable-diffusion-webui-forge/assets/19834515/3629ee36-4a99-4d9b-b371-12efb260a283)
![image](https://github.com/lllyasviel/stable-diffusion-webui-forge/assets/19834515/6d13ebb7-c30d-4aa8-9242-c0b5a1af8c95)
![image](https://github.com/lllyasviel/stable-diffusion-webui-forge/assets/19834515/c4f723c3-6ea7-4539-980b-0708ed2a69aa)
(average and peak are all 6.3GB/8GB)
You can see that Forge does not change WebUI results. Installing Forge is not a seed breaking change.
Forge can perfectly keep WebUI unchanged even for most complicated prompts like `fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]`.
All your previous works still work in Forge!
# Forge Backend
Forge backend removes all WebUI's codes related to resource management and reworked everything. All previous CMD flags like `medvram, lowvram, medvram-sdxl, precision full, no half, no half vae, attention_xxx, upcast unet`, ... are all **REMOVED**. Adding these flags will not cause error but they will not do anything now. **We highly encourage Forge users to remove all cmd flags and let Forge to decide how to load models.**
Without any cmd flag, Forge can run SDXL with 4GB vram and SD1.5 with 2GB vram.
**The only one flag that you may still need** is `--always-offload-from-vram` (This flag will make things **slower**). This option will let Forge always unload models from VRAM. This can be useful if you use multiple software together and want Forge to use less VRAM and give some vram to other software, or when you are using some old extensions that will compete vram with Forge, or (very rarely) when you get OOM.
If you really want to play with cmd flags, you can additionally control the GPU with:
(extreme VRAM cases)
--always-gpu
--always-cpu
(rare attention cases)
--attention-split
--attention-quad
--attention-pytorch
--disable-xformers
--disable-attention-upcast
(float point type)
--all-in-fp32
--all-in-fp16
--unet-in-bf16
--unet-in-fp16
--unet-in-fp8-e4m3fn
--unet-in-fp8-e5m2
--vae-in-fp16
--vae-in-fp32
--vae-in-bf16
--clip-in-fp8-e4m3fn
--clip-in-fp8-e5m2
--clip-in-fp16
--clip-in-fp32
(rare platforms)
--directml
--disable-ipex-hijack
--pytorch-deterministic
Again, Forge do not recommend users to use any cmd flags unless you are very sure that you really need these.
# UNet Patcher
Note that [Forge does not use any other software as backend](https://github.com/lllyasviel/stable-diffusion-webui-forge/discussions/169). The full name of the backend is `Stable Diffusion WebUI with Forge backend`, or for simplicity, the `Forge backend`. The API and python symbols are made similar to previous software only for reducing the learning cost of developers.
Now developing an extension is super simple. We finally have a patchable UNet.
Below is using one single file with 80 lines of codes to support FreeU:
`extensions-builtin/sd_forge_freeu/scripts/forge_freeu.py`
```python
import torch
import gradio as gr
from modules import scripts
def Fourier_filter(x, threshold, scale):
x_freq = torch.fft.fftn(x.float(), dim=(-2, -1))
x_freq = torch.fft.fftshift(x_freq, dim=(-2, -1))
B, C, H, W = x_freq.shape
mask = torch.ones((B, C, H, W), device=x.device)
crow, ccol = H // 2, W //2
mask[..., crow - threshold:crow + threshold, ccol - threshold:ccol + threshold] = scale
x_freq = x_freq * mask
x_freq = torch.fft.ifftshift(x_freq, dim=(-2, -1))
x_filtered = torch.fft.ifftn(x_freq, dim=(-2, -1)).real
return x_filtered.to(x.dtype)
def set_freeu_v2_patch(model, b1, b2, s1, s2):
model_channels = model.model.model_config.unet_config["model_channels"]
scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)}
def output_block_patch(h, hsp, *args, **kwargs):
scale = scale_dict.get(h.shape[1], None)
if scale is not None:
hidden_mean = h.mean(1).unsqueeze(1)
B = hidden_mean.shape[0]
hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True)
hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True)
hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / \
(hidden_max - hidden_min).unsqueeze(2).unsqueeze(3)
h[:, :h.shape[1] // 2] = h[:, :h.shape[1] // 2] * ((scale[0] - 1) * hidden_mean + 1)
hsp = Fourier_filter(hsp, threshold=1, scale=scale[1])
return h, hsp
m = model.clone()
m.set_model_output_block_patch(output_block_patch)
return m
class FreeUForForge(scripts.Script):
def title(self):
return "FreeU Integrated"
def show(self, is_img2img):
# make this extension visible in both txt2img and img2img tab.
return scripts.AlwaysVisible
def ui(self, *args, **kwargs):
with gr.Accordion(open=False, label=self.title()):
freeu_enabled = gr.Checkbox(label='Enabled', value=False)
freeu_b1 = gr.Slider(label='B1', minimum=0, maximum=2, step=0.01, value=1.01)
freeu_b2 = gr.Slider(label='B2', minimum=0, maximum=2, step=0.01, value=1.02)
freeu_s1 = gr.Slider(label='S1', minimum=0, maximum=4, step=0.01, value=0.99)
freeu_s2 = gr.Slider(label='S2', minimum=0, maximum=4, step=0.01, value=0.95)
return freeu_enabled, freeu_b1, freeu_b2, freeu_s1, freeu_s2
def process_before_every_sampling(self, p, *script_args, **kwargs):
# This will be called before every sampling.
# If you use highres fix, this will be called twice.
freeu_enabled, freeu_b1, freeu_b2, freeu_s1, freeu_s2 = script_args
if not freeu_enabled:
return
unet = p.sd_model.forge_objects.unet
unet = set_freeu_v2_patch(unet, freeu_b1, freeu_b2, freeu_s1, freeu_s2)
p.sd_model.forge_objects.unet = unet
# Below codes will add some logs to the texts below the image outputs on UI.
# The extra_generation_params does not influence results.
p.extra_generation_params.update(dict(
freeu_enabled=freeu_enabled,
freeu_b1=freeu_b1,
freeu_b2=freeu_b2,
freeu_s1=freeu_s1,
freeu_s2=freeu_s2,
))
return
```
2. Navigate to the directory you would like the webui to be installed and execute the following command:
```bash
wget -q https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/webui.sh
It looks like this:
![image](https://github.com/lllyasviel/stable-diffusion-webui-forge/assets/19834515/277bac6e-5ea7-4bff-b71a-e55a60cfc03c)
Similar components like HyperTile, KohyaHighResFix, SAG, can all be implemented within 100 lines of codes (see also the codes).
![image](https://github.com/lllyasviel/stable-diffusion-webui-forge/assets/19834515/06472b03-b833-4816-ab47-70712ac024d3)
ControlNets can finally be called by different extensions.
Implementing Stable Video Diffusion and Zero123 are also super simple now (see also the codes).
*Stable Video Diffusion:*
`extensions-builtin/sd_forge_svd/scripts/forge_svd.py`
```python
import torch
import gradio as gr
import os
import pathlib
from modules import script_callbacks
from modules.paths import models_path
from modules.ui_common import ToolButton, refresh_symbol
from modules import shared
from modules_forge.forge_util import numpy_to_pytorch, pytorch_to_numpy
from ldm_patched.modules.sd import load_checkpoint_guess_config
from ldm_patched.contrib.external_video_model import VideoLinearCFGGuidance, SVD_img2vid_Conditioning
from ldm_patched.contrib.external import KSampler, VAEDecode
opVideoLinearCFGGuidance = VideoLinearCFGGuidance()
opSVD_img2vid_Conditioning = SVD_img2vid_Conditioning()
opKSampler = KSampler()
opVAEDecode = VAEDecode()
svd_root = os.path.join(models_path, 'svd')
os.makedirs(svd_root, exist_ok=True)
svd_filenames = []
def update_svd_filenames():
global svd_filenames
svd_filenames = [
pathlib.Path(x).name for x in
shared.walk_files(svd_root, allowed_extensions=[".pt", ".ckpt", ".safetensors"])
]
return svd_filenames
@torch.inference_mode()
@torch.no_grad()
def predict(filename, width, height, video_frames, motion_bucket_id, fps, augmentation_level,
sampling_seed, sampling_steps, sampling_cfg, sampling_sampler_name, sampling_scheduler,
sampling_denoise, guidance_min_cfg, input_image):
filename = os.path.join(svd_root, filename)
model_raw, _, vae, clip_vision = \
load_checkpoint_guess_config(filename, output_vae=True, output_clip=False, output_clipvision=True)
model = opVideoLinearCFGGuidance.patch(model_raw, guidance_min_cfg)[0]
init_image = numpy_to_pytorch(input_image)
positive, negative, latent_image = opSVD_img2vid_Conditioning.encode(
clip_vision, init_image, vae, width, height, video_frames, motion_bucket_id, fps, augmentation_level)
output_latent = opKSampler.sample(model, sampling_seed, sampling_steps, sampling_cfg,
sampling_sampler_name, sampling_scheduler, positive,
negative, latent_image, sampling_denoise)[0]
output_pixels = opVAEDecode.decode(vae, output_latent)[0]
outputs = pytorch_to_numpy(output_pixels)
return outputs
def on_ui_tabs():
with gr.Blocks() as svd_block:
with gr.Row():
with gr.Column():
input_image = gr.Image(label='Input Image', source='upload', type='numpy', height=400)
with gr.Row():
filename = gr.Dropdown(label="SVD Checkpoint Filename",
choices=svd_filenames,
value=svd_filenames[0] if len(svd_filenames) > 0 else None)
refresh_button = ToolButton(value=refresh_symbol, tooltip="Refresh")
refresh_button.click(
fn=lambda: gr.update(choices=update_svd_filenames),
inputs=[], outputs=filename)
width = gr.Slider(label='Width', minimum=16, maximum=8192, step=8, value=1024)
height = gr.Slider(label='Height', minimum=16, maximum=8192, step=8, value=576)
video_frames = gr.Slider(label='Video Frames', minimum=1, maximum=4096, step=1, value=14)
motion_bucket_id = gr.Slider(label='Motion Bucket Id', minimum=1, maximum=1023, step=1, value=127)
fps = gr.Slider(label='Fps', minimum=1, maximum=1024, step=1, value=6)
augmentation_level = gr.Slider(label='Augmentation Level', minimum=0.0, maximum=10.0, step=0.01,
value=0.0)
sampling_steps = gr.Slider(label='Sampling Steps', minimum=1, maximum=200, step=1, value=20)
sampling_cfg = gr.Slider(label='CFG Scale', minimum=0.0, maximum=50.0, step=0.1, value=2.5)
sampling_denoise = gr.Slider(label='Sampling Denoise', minimum=0.0, maximum=1.0, step=0.01, value=1.0)
guidance_min_cfg = gr.Slider(label='Guidance Min Cfg', minimum=0.0, maximum=100.0, step=0.5, value=1.0)
sampling_sampler_name = gr.Radio(label='Sampler Name',
choices=['euler', 'euler_ancestral', 'heun', 'heunpp2', 'dpm_2',
'dpm_2_ancestral', 'lms', 'dpm_fast', 'dpm_adaptive',
'dpmpp_2s_ancestral', 'dpmpp_sde', 'dpmpp_sde_gpu',
'dpmpp_2m', 'dpmpp_2m_sde', 'dpmpp_2m_sde_gpu',
'dpmpp_3m_sde', 'dpmpp_3m_sde_gpu', 'ddpm', 'lcm', 'ddim',
'uni_pc', 'uni_pc_bh2'], value='euler')
sampling_scheduler = gr.Radio(label='Scheduler',
choices=['normal', 'karras', 'exponential', 'sgm_uniform', 'simple',
'ddim_uniform'], value='karras')
sampling_seed = gr.Number(label='Seed', value=12345, precision=0)
generate_button = gr.Button(value="Generate")
ctrls = [filename, width, height, video_frames, motion_bucket_id, fps, augmentation_level,
sampling_seed, sampling_steps, sampling_cfg, sampling_sampler_name, sampling_scheduler,
sampling_denoise, guidance_min_cfg, input_image]
with gr.Column():
output_gallery = gr.Gallery(label='Gallery', show_label=False, object_fit='contain',
visible=True, height=1024, columns=4)
generate_button.click(predict, inputs=ctrls, outputs=[output_gallery])
return [(svd_block, "SVD", "svd")]
update_svd_filenames()
script_callbacks.on_ui_tabs(on_ui_tabs)
```
3. Run `webui.sh`.
4. Check `webui-user.sh` for options.
### Installation on Apple Silicon
Find the instructions [here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Installation-on-Apple-Silicon).
Note that although the above codes look like independent codes, they actually will automatically offload/unload any other models. For example, below is me opening webui, load SDXL, generated an image, then go to SVD, then generated image frames. You can see that the GPU memory is perfectly managed and the SDXL is moved to RAM then SVD is moved to GPU.
## Contributing
Here's how to add code to this repo: [Contributing](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Contributing)
Note that this management is fully automatic. This makes writing extensions super simple.
## Documentation
![image](https://github.com/lllyasviel/stable-diffusion-webui-forge/assets/19834515/de1a2d05-344a-44d7-bab8-9ecc0a58a8d3)
The documentation was moved from this README over to the project's [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki).
![image](https://github.com/lllyasviel/stable-diffusion-webui-forge/assets/19834515/14bcefcf-599f-42c3-bce9-3fd5e428dd91)
For the purposes of getting Google and other search engines to crawl the wiki, here's a link to the (not for humans) [crawlable wiki](https://github-wiki-see.page/m/AUTOMATIC1111/stable-diffusion-webui/wiki).
Similarly, Zero123:
## Credits
Licenses for borrowed code can be found in `Settings -> Licenses` screen, and also in `html/licenses.html` file.
![image](https://github.com/lllyasviel/stable-diffusion-webui-forge/assets/19834515/7685019c-7239-47fb-9cb5-2b7b33943285)
- Stable Diffusion - https://github.com/Stability-AI/stablediffusion, https://github.com/CompVis/taming-transformers
- k-diffusion - https://github.com/crowsonkb/k-diffusion.git
- Spandrel - https://github.com/chaiNNer-org/spandrel implementing
- GFPGAN - https://github.com/TencentARC/GFPGAN.git
- CodeFormer - https://github.com/sczhou/CodeFormer
- ESRGAN - https://github.com/xinntao/ESRGAN
- SwinIR - https://github.com/JingyunLiang/SwinIR
- Swin2SR - https://github.com/mv-lab/swin2sr
- LDSR - https://github.com/Hafiidz/latent-diffusion
- MiDaS - https://github.com/isl-org/MiDaS
- Ideas for optimizations - https://github.com/basujindal/stable-diffusion
- Cross Attention layer optimization - Doggettx - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing.
- Cross Attention layer optimization - InvokeAI, lstein - https://github.com/invoke-ai/InvokeAI (originally http://github.com/lstein/stable-diffusion)
- Sub-quadratic Cross Attention layer optimization - Alex Birch (https://github.com/Birch-san/diffusers/pull/1), Amin Rezaei (https://github.com/AminRezaei0x443/memory-efficient-attention)
- Textual Inversion - Rinon Gal - https://github.com/rinongal/textual_inversion (we're not using his code, but we are using his ideas).
- Idea for SD upscale - https://github.com/jquesnelle/txt2imghd
- Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot
- CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator
- Idea for Composable Diffusion - https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch
- xformers - https://github.com/facebookresearch/xformers
- DeepDanbooru - interrogator for anime diffusers https://github.com/KichangKim/DeepDanbooru
- Sampling in float32 precision from a float16 UNet - marunine for the idea, Birch-san for the example Diffusers implementation (https://github.com/Birch-san/diffusers-play/tree/92feee6)
- Instruct pix2pix - Tim Brooks (star), Aleksander Holynski (star), Alexei A. Efros (no star) - https://github.com/timothybrooks/instruct-pix2pix
- Security advice - RyotaK
- UniPC sampler - Wenliang Zhao - https://github.com/wl-zhao/UniPC
- TAESD - Ollin Boer Bohan - https://github.com/madebyollin/taesd
- LyCORIS - KohakuBlueleaf
- Restart sampling - lambertae - https://github.com/Newbeeer/diffusion_restart_sampling
- Hypertile - tfernd - https://github.com/tfernd/HyperTile
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
- (You)
### Write a simple ControlNet:
Below is a simple extension to have a completely independent pass of ControlNet that never conflicts any other extensions:
`extensions-builtin/sd_forge_controlnet_example/scripts/sd_forge_controlnet_example.py`
Note that this extension is hidden because it is only for developers. To see it in UI, use `--show-controlnet-example`.
The memory optimization in this example is fully automatic. You do not need to care about memory and inference speed, but you may want to cache objects if you wish.
```python
# Use --show-controlnet-example to see this extension.
import cv2
import gradio as gr
import torch
from modules import scripts
from modules.shared_cmd_options import cmd_opts
from modules_forge.shared import supported_preprocessors
from modules.modelloader import load_file_from_url
from ldm_patched.modules.controlnet import load_controlnet
from modules_forge.controlnet import apply_controlnet_advanced
from modules_forge.forge_util import numpy_to_pytorch
from modules_forge.shared import controlnet_dir
class ControlNetExampleForge(scripts.Script):
model = None
def title(self):
return "ControlNet Example for Developers"
def show(self, is_img2img):
# make this extension visible in both txt2img and img2img tab.
return scripts.AlwaysVisible
def ui(self, *args, **kwargs):
with gr.Accordion(open=False, label=self.title()):
gr.HTML('This is an example controlnet extension for developers.')
gr.HTML('You see this extension because you used --show-controlnet-example')
input_image = gr.Image(source='upload', type='numpy')
funny_slider = gr.Slider(label='This slider does nothing. It just shows you how to transfer parameters.',
minimum=0.0, maximum=1.0, value=0.5)
return input_image, funny_slider
def process(self, p, *script_args, **kwargs):
input_image, funny_slider = script_args
# This slider does nothing. It just shows you how to transfer parameters.
del funny_slider
if input_image is None:
return
# controlnet_canny_path = load_file_from_url(
# url='https://huggingface.co/lllyasviel/sd_control_collection/resolve/main/sai_xl_canny_256lora.safetensors',
# model_dir=model_dir,
# file_name='sai_xl_canny_256lora.safetensors'
# )
controlnet_canny_path = load_file_from_url(
url='https://huggingface.co/lllyasviel/fav_models/resolve/main/fav/control_v11p_sd15_canny_fp16.safetensors',
model_dir=controlnet_dir,
file_name='control_v11p_sd15_canny_fp16.safetensors'
)
print('The model [control_v11p_sd15_canny_fp16.safetensors] download finished.')
self.model = load_controlnet(controlnet_canny_path)
print('Controlnet loaded.')
return
def process_before_every_sampling(self, p, *script_args, **kwargs):
# This will be called before every sampling.
# If you use highres fix, this will be called twice.
input_image, funny_slider = script_args
if input_image is None or self.model is None:
return
B, C, H, W = kwargs['noise'].shape # latent_shape
height = H * 8
width = W * 8
batch_size = p.batch_size
preprocessor = supported_preprocessors['canny']
# detect control at certain resolution
control_image = preprocessor(
input_image, resolution=512, slider_1=100, slider_2=200, slider_3=None)
# here we just use nearest neighbour to align input shape.
# You may want crop and resize, or crop and fill, or others.
control_image = cv2.resize(
control_image, (width, height), interpolation=cv2.INTER_NEAREST)
# Output preprocessor result. Now called every sampling. Cache in your own way.
p.extra_result_images.append(control_image)
print('Preprocessor Canny finished.')
control_image_bchw = numpy_to_pytorch(control_image).movedim(-1, 1)
unet = p.sd_model.forge_objects.unet
# Unet has input, middle, output blocks, and we can give different weights
# to each layers in all blocks.
# Below is an example for stronger control in middle block.
# This is helpful for some high-res fix passes. (p.is_hr_pass)
positive_advanced_weighting = {
'input': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2],
'middle': [1.0],
'output': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2]
}
negative_advanced_weighting = {
'input': [0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95, 1.05, 1.15, 1.25],
'middle': [1.05],
'output': [0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95, 1.05, 1.15, 1.25]
}
# The advanced_frame_weighting is a weight applied to each image in a batch.
# The length of this list must be same with batch size
# For example, if batch size is 5, the below list is [0.2, 0.4, 0.6, 0.8, 1.0]
# If you view the 5 images as 5 frames in a video, this will lead to
# progressively stronger control over time.
advanced_frame_weighting = [float(i + 1) / float(batch_size) for i in range(batch_size)]
# The advanced_sigma_weighting allows you to dynamically compute control
# weights given diffusion timestep (sigma).
# For example below code can softly make beginning steps stronger than ending steps.
sigma_max = unet.model.model_sampling.sigma_max
sigma_min = unet.model.model_sampling.sigma_min
advanced_sigma_weighting = lambda s: (s - sigma_min) / (sigma_max - sigma_min)
# You can even input a tensor to mask all control injections
# The mask will be automatically resized during inference in UNet.
# The size should be B 1 H W and the H and W are not important
# because they will be resized automatically
advanced_mask_weighting = torch.ones(size=(1, 1, 512, 512))
# But in this simple example we do not use them
positive_advanced_weighting = None
negative_advanced_weighting = None
advanced_frame_weighting = None
advanced_sigma_weighting = None
advanced_mask_weighting = None
unet = apply_controlnet_advanced(unet=unet, controlnet=self.model, image_bchw=control_image_bchw,
strength=0.6, start_percent=0.0, end_percent=0.8,
positive_advanced_weighting=positive_advanced_weighting,
negative_advanced_weighting=negative_advanced_weighting,
advanced_frame_weighting=advanced_frame_weighting,
advanced_sigma_weighting=advanced_sigma_weighting,
advanced_mask_weighting=advanced_mask_weighting)
p.sd_model.forge_objects.unet = unet
# Below codes will add some logs to the texts below the image outputs on UI.
# The extra_generation_params does not influence results.
p.extra_generation_params.update(dict(
controlnet_info='You should see these texts below output images!',
))
return
# Use --show-controlnet-example to see this extension.
if not cmd_opts.show_controlnet_example:
del ControlNetExampleForge
```
![image](https://github.com/lllyasviel/stable-diffusion-webui-forge/assets/19834515/822fa2fc-c9f4-4f58-8669-4b6680b91063)
### Add a preprocessor
Below is the full codes to add a normalbae preprocessor with perfect memory managements.
You can use arbitrary independent extensions to add a preprocessor.
Your preprocessor will be read by all other extensions using `modules_forge.shared.preprocessors`
Below codes are in `extensions-builtin\forge_preprocessor_normalbae\scripts\preprocessor_normalbae.py`
```python
from modules_forge.supported_preprocessor import Preprocessor, PreprocessorParameter
from modules_forge.shared import preprocessor_dir, add_supported_preprocessor
from modules_forge.forge_util import resize_image_with_pad
from modules.modelloader import load_file_from_url
import types
import torch
import numpy as np
from einops import rearrange
from annotator.normalbae.models.NNET import NNET
from annotator.normalbae import load_checkpoint
from torchvision import transforms
class PreprocessorNormalBae(Preprocessor):
def __init__(self):
super().__init__()
self.name = 'normalbae'
self.tags = ['NormalMap']
self.model_filename_filters = ['normal']
self.slider_resolution = PreprocessorParameter(
label='Resolution', minimum=128, maximum=2048, value=512, step=8, visible=True)
self.slider_1 = PreprocessorParameter(visible=False)
self.slider_2 = PreprocessorParameter(visible=False)
self.slider_3 = PreprocessorParameter(visible=False)
self.show_control_mode = True
self.do_not_need_model = False
self.sorting_priority = 100 # higher goes to top in the list
def load_model(self):
if self.model_patcher is not None:
return
model_path = load_file_from_url(
"https://huggingface.co/lllyasviel/Annotators/resolve/main/scannet.pt",
model_dir=preprocessor_dir)
args = types.SimpleNamespace()
args.mode = 'client'
args.architecture = 'BN'
args.pretrained = 'scannet'
args.sampling_ratio = 0.4
args.importance_ratio = 0.7
model = NNET(args)
model = load_checkpoint(model_path, model)
self.norm = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
self.model_patcher = self.setup_model_patcher(model)
def __call__(self, input_image, resolution, slider_1=None, slider_2=None, slider_3=None, **kwargs):
input_image, remove_pad = resize_image_with_pad(input_image, resolution)
self.load_model()
self.move_all_model_patchers_to_gpu()
assert input_image.ndim == 3
image_normal = input_image
with torch.no_grad():
image_normal = self.send_tensor_to_model_device(torch.from_numpy(image_normal))
image_normal = image_normal / 255.0
image_normal = rearrange(image_normal, 'h w c -> 1 c h w')
image_normal = self.norm(image_normal)
normal = self.model_patcher.model(image_normal)
normal = normal[0][-1][:, :3]
normal = ((normal + 1) * 0.5).clip(0, 1)
normal = rearrange(normal[0], 'c h w -> h w c').cpu().numpy()
normal_image = (normal * 255.0).clip(0, 255).astype(np.uint8)
return remove_pad(normal_image)
add_supported_preprocessor(PreprocessorNormalBae())
```
# New features (that are not available in original WebUI)
Thanks to Unet Patcher, many new things are possible now and supported in Forge, including SVD, Z123, masked Ip-adapter, masked controlnet, photomaker, etc.
Masked Ip-Adapter
![image](https://github.com/lllyasviel/stable-diffusion-webui-forge/assets/19834515/d26630f9-922d-4483-8bf9-f364dca5fd50)
![image](https://github.com/lllyasviel/stable-diffusion-webui-forge/assets/19834515/03580ef7-235c-4b03-9ca6-a27677a5a175)
![image](https://github.com/lllyasviel/stable-diffusion-webui-forge/assets/19834515/d9ed4a01-70d4-45b4-a6a7-2f765f158fae)
Masked ControlNet
![image](https://github.com/lllyasviel/stable-diffusion-webui-forge/assets/19834515/872d4785-60e4-4431-85c7-665c781dddaa)
![image](https://github.com/lllyasviel/stable-diffusion-webui-forge/assets/19834515/335a3b33-1ef8-46ff-a462-9f1b4f2c49fc)
![image](https://github.com/lllyasviel/stable-diffusion-webui-forge/assets/19834515/b3684a15-8895-414e-8188-487269dfcada)
PhotoMaker
(Note that photomaker is a special control that need you to add the trigger word "photomaker". Your prompt should be like "a photo of photomaker")
![image](https://github.com/lllyasviel/stable-diffusion-webui-forge/assets/19834515/07b0b626-05b5-473b-9d69-3657624d59be)
Marigold Depth
![image](https://github.com/lllyasviel/stable-diffusion-webui-forge/assets/19834515/bdf54148-892d-410d-8ed9-70b4b121b6e7)
# New Samplers (that are not in origin)
DDPM
DDPM Karras
DPM++ 2M Turbo
DPM++ 2M SDE Turbo
LCM Karras
Euler A Turbo
# About Extensions
ControlNet and TiledVAE are integrated, and you should uninstall these two extensions:
sd-webui-controlnet
multidiffusion-upscaler-for-automatic1111
Note that **AnimateDiff** is under construction by [continue-revolution](https://github.com/continue-revolution) at [sd-webui-animatediff forge/master branch](https://github.com/continue-revolution/sd-webui-animatediff/tree/forge/master) and [sd-forge-animatediff](https://github.com/continue-revolution/sd-forge-animatediff) (they are in sync). (continue-revolution original words: "basic features (prompt travel, inf t2v) have been proven to work well, motion lora, cn v2v still under construction and may be finished in a week, and we can mention motion brush")
Other extensions should work without problems, like:
canvas-zoom
translations/localizations
Dynamic Prompts
Adetailer
Ultimate SD Upscale
Reactor
However, if newer extensions use Forge, their codes can be much shorter.
Usually if an old extension rework using Forge's unet patcher, 80% codes can be removed, especially when they need to call controlnet.
# Contribution
Forge uses a bot to get commits and codes from https://github.com/AUTOMATIC1111/stable-diffusion-webui/tree/dev every afternoon (if merge is automatically successful by a git bot, or by my compiler, or by my ChatGPT bot) or mid-night (if my compiler and my ChatGPT bot both failed to merge and I review it manually).
All PRs that can be implemented in https://github.com/AUTOMATIC1111/stable-diffusion-webui/tree/dev should submit PRs there.
Feel free to submit PRs related to the functionality of Forge here.

View File

@ -1,7 +1,7 @@
import os
from modules.modelloader import load_file_from_url
from modules.upscaler import Upscaler, UpscalerData
from modules.upscaler import Upscaler, UpscalerData, prepare_free_memory
from ldsr_model_arch import LDSR
from modules import shared, script_callbacks, errors
import sd_hijack_autoencoder # noqa: F401
@ -49,6 +49,7 @@ class UpscalerLDSR(Upscaler):
return LDSR(model, yaml)
def do_upscale(self, img, path):
prepare_free_memory(aggressive=True)
try:
ldsr = self.load_model(path)
except Exception:

View File

@ -1,31 +1,6 @@
import torch
import networks
from modules import patches
class LoraPatches:
def __init__(self):
self.Linear_forward = patches.patch(__name__, torch.nn.Linear, 'forward', networks.network_Linear_forward)
self.Linear_load_state_dict = patches.patch(__name__, torch.nn.Linear, '_load_from_state_dict', networks.network_Linear_load_state_dict)
self.Conv2d_forward = patches.patch(__name__, torch.nn.Conv2d, 'forward', networks.network_Conv2d_forward)
self.Conv2d_load_state_dict = patches.patch(__name__, torch.nn.Conv2d, '_load_from_state_dict', networks.network_Conv2d_load_state_dict)
self.GroupNorm_forward = patches.patch(__name__, torch.nn.GroupNorm, 'forward', networks.network_GroupNorm_forward)
self.GroupNorm_load_state_dict = patches.patch(__name__, torch.nn.GroupNorm, '_load_from_state_dict', networks.network_GroupNorm_load_state_dict)
self.LayerNorm_forward = patches.patch(__name__, torch.nn.LayerNorm, 'forward', networks.network_LayerNorm_forward)
self.LayerNorm_load_state_dict = patches.patch(__name__, torch.nn.LayerNorm, '_load_from_state_dict', networks.network_LayerNorm_load_state_dict)
self.MultiheadAttention_forward = patches.patch(__name__, torch.nn.MultiheadAttention, 'forward', networks.network_MultiheadAttention_forward)
self.MultiheadAttention_load_state_dict = patches.patch(__name__, torch.nn.MultiheadAttention, '_load_from_state_dict', networks.network_MultiheadAttention_load_state_dict)
pass
def undo(self):
self.Linear_forward = patches.undo(__name__, torch.nn.Linear, 'forward')
self.Linear_load_state_dict = patches.undo(__name__, torch.nn.Linear, '_load_from_state_dict')
self.Conv2d_forward = patches.undo(__name__, torch.nn.Conv2d, 'forward')
self.Conv2d_load_state_dict = patches.undo(__name__, torch.nn.Conv2d, '_load_from_state_dict')
self.GroupNorm_forward = patches.undo(__name__, torch.nn.GroupNorm, 'forward')
self.GroupNorm_load_state_dict = patches.undo(__name__, torch.nn.GroupNorm, '_load_from_state_dict')
self.LayerNorm_forward = patches.undo(__name__, torch.nn.LayerNorm, 'forward')
self.LayerNorm_load_state_dict = patches.undo(__name__, torch.nn.LayerNorm, '_load_from_state_dict')
self.MultiheadAttention_forward = patches.undo(__name__, torch.nn.MultiheadAttention, 'forward')
self.MultiheadAttention_load_state_dict = patches.undo(__name__, torch.nn.MultiheadAttention, '_load_from_state_dict')
pass

View File

@ -1,68 +0,0 @@
import torch
def make_weight_cp(t, wa, wb):
temp = torch.einsum('i j k l, j r -> i r k l', t, wb)
return torch.einsum('i j k l, i r -> r j k l', temp, wa)
def rebuild_conventional(up, down, shape, dyn_dim=None):
up = up.reshape(up.size(0), -1)
down = down.reshape(down.size(0), -1)
if dyn_dim is not None:
up = up[:, :dyn_dim]
down = down[:dyn_dim, :]
return (up @ down).reshape(shape)
def rebuild_cp_decomposition(up, down, mid):
up = up.reshape(up.size(0), -1)
down = down.reshape(down.size(0), -1)
return torch.einsum('n m k l, i n, m j -> i j k l', mid, up, down)
# copied from https://github.com/KohakuBlueleaf/LyCORIS/blob/dev/lycoris/modules/lokr.py
def factorization(dimension: int, factor:int=-1) -> tuple[int, int]:
'''
return a tuple of two value of input dimension decomposed by the number closest to factor
second value is higher or equal than first value.
In LoRA with Kroneckor Product, first value is a value for weight scale.
secon value is a value for weight.
Becuase of non-commutative property, AB BA. Meaning of two matrices is slightly different.
examples)
factor
-1 2 4 8 16 ...
127 -> 1, 127 127 -> 1, 127 127 -> 1, 127 127 -> 1, 127 127 -> 1, 127
128 -> 8, 16 128 -> 2, 64 128 -> 4, 32 128 -> 8, 16 128 -> 8, 16
250 -> 10, 25 250 -> 2, 125 250 -> 2, 125 250 -> 5, 50 250 -> 10, 25
360 -> 8, 45 360 -> 2, 180 360 -> 4, 90 360 -> 8, 45 360 -> 12, 30
512 -> 16, 32 512 -> 2, 256 512 -> 4, 128 512 -> 8, 64 512 -> 16, 32
1024 -> 32, 32 1024 -> 2, 512 1024 -> 4, 256 1024 -> 8, 128 1024 -> 16, 64
'''
if factor > 0 and (dimension % factor) == 0:
m = factor
n = dimension // factor
if m > n:
n, m = m, n
return m, n
if factor < 0:
factor = dimension
m, n = 1, dimension
length = m + n
while m<n:
new_m = m + 1
while dimension%new_m != 0:
new_m += 1
new_n = dimension // new_m
if new_m + new_n > length or new_m>factor:
break
else:
m, n = new_m, new_n
if m > n:
n, m = m, n
return m, n

View File

@ -1,27 +0,0 @@
import network
class ModuleTypeFull(network.ModuleType):
def create_module(self, net: network.Network, weights: network.NetworkWeights):
if all(x in weights.w for x in ["diff"]):
return NetworkModuleFull(net, weights)
return None
class NetworkModuleFull(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights):
super().__init__(net, weights)
self.weight = weights.w.get("diff")
self.ex_bias = weights.w.get("diff_b")
def calc_updown(self, orig_weight):
output_shape = self.weight.shape
updown = self.weight.to(orig_weight.device)
if self.ex_bias is not None:
ex_bias = self.ex_bias.to(orig_weight.device)
else:
ex_bias = None
return self.finalize_updown(updown, orig_weight, output_shape, ex_bias)

View File

@ -1,33 +0,0 @@
import network
class ModuleTypeGLora(network.ModuleType):
def create_module(self, net: network.Network, weights: network.NetworkWeights):
if all(x in weights.w for x in ["a1.weight", "a2.weight", "alpha", "b1.weight", "b2.weight"]):
return NetworkModuleGLora(net, weights)
return None
# adapted from https://github.com/KohakuBlueleaf/LyCORIS
class NetworkModuleGLora(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights):
super().__init__(net, weights)
if hasattr(self.sd_module, 'weight'):
self.shape = self.sd_module.weight.shape
self.w1a = weights.w["a1.weight"]
self.w1b = weights.w["b1.weight"]
self.w2a = weights.w["a2.weight"]
self.w2b = weights.w["b2.weight"]
def calc_updown(self, orig_weight):
w1a = self.w1a.to(orig_weight.device)
w1b = self.w1b.to(orig_weight.device)
w2a = self.w2a.to(orig_weight.device)
w2b = self.w2b.to(orig_weight.device)
output_shape = [w1a.size(0), w1b.size(1)]
updown = ((w2b @ w1b) + ((orig_weight.to(dtype = w1a.dtype) @ w2a) @ w1a))
return self.finalize_updown(updown, orig_weight, output_shape)

View File

@ -1,55 +0,0 @@
import lyco_helpers
import network
class ModuleTypeHada(network.ModuleType):
def create_module(self, net: network.Network, weights: network.NetworkWeights):
if all(x in weights.w for x in ["hada_w1_a", "hada_w1_b", "hada_w2_a", "hada_w2_b"]):
return NetworkModuleHada(net, weights)
return None
class NetworkModuleHada(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights):
super().__init__(net, weights)
if hasattr(self.sd_module, 'weight'):
self.shape = self.sd_module.weight.shape
self.w1a = weights.w["hada_w1_a"]
self.w1b = weights.w["hada_w1_b"]
self.dim = self.w1b.shape[0]
self.w2a = weights.w["hada_w2_a"]
self.w2b = weights.w["hada_w2_b"]
self.t1 = weights.w.get("hada_t1")
self.t2 = weights.w.get("hada_t2")
def calc_updown(self, orig_weight):
w1a = self.w1a.to(orig_weight.device)
w1b = self.w1b.to(orig_weight.device)
w2a = self.w2a.to(orig_weight.device)
w2b = self.w2b.to(orig_weight.device)
output_shape = [w1a.size(0), w1b.size(1)]
if self.t1 is not None:
output_shape = [w1a.size(1), w1b.size(1)]
t1 = self.t1.to(orig_weight.device)
updown1 = lyco_helpers.make_weight_cp(t1, w1a, w1b)
output_shape += t1.shape[2:]
else:
if len(w1b.shape) == 4:
output_shape += w1b.shape[2:]
updown1 = lyco_helpers.rebuild_conventional(w1a, w1b, output_shape)
if self.t2 is not None:
t2 = self.t2.to(orig_weight.device)
updown2 = lyco_helpers.make_weight_cp(t2, w2a, w2b)
else:
updown2 = lyco_helpers.rebuild_conventional(w2a, w2b, output_shape)
updown = updown1 * updown2
return self.finalize_updown(updown, orig_weight, output_shape)

View File

@ -1,30 +0,0 @@
import network
class ModuleTypeIa3(network.ModuleType):
def create_module(self, net: network.Network, weights: network.NetworkWeights):
if all(x in weights.w for x in ["weight"]):
return NetworkModuleIa3(net, weights)
return None
class NetworkModuleIa3(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights):
super().__init__(net, weights)
self.w = weights.w["weight"]
self.on_input = weights.w["on_input"].item()
def calc_updown(self, orig_weight):
w = self.w.to(orig_weight.device)
output_shape = [w.size(0), orig_weight.size(1)]
if self.on_input:
output_shape.reverse()
else:
w = w.reshape(-1, 1)
updown = orig_weight * w
return self.finalize_updown(updown, orig_weight, output_shape)

View File

@ -1,64 +0,0 @@
import torch
import lyco_helpers
import network
class ModuleTypeLokr(network.ModuleType):
def create_module(self, net: network.Network, weights: network.NetworkWeights):
has_1 = "lokr_w1" in weights.w or ("lokr_w1_a" in weights.w and "lokr_w1_b" in weights.w)
has_2 = "lokr_w2" in weights.w or ("lokr_w2_a" in weights.w and "lokr_w2_b" in weights.w)
if has_1 and has_2:
return NetworkModuleLokr(net, weights)
return None
def make_kron(orig_shape, w1, w2):
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
w2 = w2.contiguous()
return torch.kron(w1, w2).reshape(orig_shape)
class NetworkModuleLokr(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights):
super().__init__(net, weights)
self.w1 = weights.w.get("lokr_w1")
self.w1a = weights.w.get("lokr_w1_a")
self.w1b = weights.w.get("lokr_w1_b")
self.dim = self.w1b.shape[0] if self.w1b is not None else self.dim
self.w2 = weights.w.get("lokr_w2")
self.w2a = weights.w.get("lokr_w2_a")
self.w2b = weights.w.get("lokr_w2_b")
self.dim = self.w2b.shape[0] if self.w2b is not None else self.dim
self.t2 = weights.w.get("lokr_t2")
def calc_updown(self, orig_weight):
if self.w1 is not None:
w1 = self.w1.to(orig_weight.device)
else:
w1a = self.w1a.to(orig_weight.device)
w1b = self.w1b.to(orig_weight.device)
w1 = w1a @ w1b
if self.w2 is not None:
w2 = self.w2.to(orig_weight.device)
elif self.t2 is None:
w2a = self.w2a.to(orig_weight.device)
w2b = self.w2b.to(orig_weight.device)
w2 = w2a @ w2b
else:
t2 = self.t2.to(orig_weight.device)
w2a = self.w2a.to(orig_weight.device)
w2b = self.w2b.to(orig_weight.device)
w2 = lyco_helpers.make_weight_cp(t2, w2a, w2b)
output_shape = [w1.size(0) * w2.size(0), w1.size(1) * w2.size(1)]
if len(orig_weight.shape) == 4:
output_shape = orig_weight.shape
updown = make_kron(output_shape, w1, w2)
return self.finalize_updown(updown, orig_weight, output_shape)

View File

@ -1,86 +0,0 @@
import torch
import lyco_helpers
import network
from modules import devices
class ModuleTypeLora(network.ModuleType):
def create_module(self, net: network.Network, weights: network.NetworkWeights):
if all(x in weights.w for x in ["lora_up.weight", "lora_down.weight"]):
return NetworkModuleLora(net, weights)
return None
class NetworkModuleLora(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights):
super().__init__(net, weights)
self.up_model = self.create_module(weights.w, "lora_up.weight")
self.down_model = self.create_module(weights.w, "lora_down.weight")
self.mid_model = self.create_module(weights.w, "lora_mid.weight", none_ok=True)
self.dim = weights.w["lora_down.weight"].shape[0]
def create_module(self, weights, key, none_ok=False):
weight = weights.get(key)
if weight is None and none_ok:
return None
is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear, torch.nn.MultiheadAttention]
is_conv = type(self.sd_module) in [torch.nn.Conv2d]
if is_linear:
weight = weight.reshape(weight.shape[0], -1)
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
elif is_conv and key == "lora_down.weight" or key == "dyn_up":
if len(weight.shape) == 2:
weight = weight.reshape(weight.shape[0], -1, 1, 1)
if weight.shape[2] != 1 or weight.shape[3] != 1:
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], self.sd_module.kernel_size, self.sd_module.stride, self.sd_module.padding, bias=False)
else:
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
elif is_conv and key == "lora_mid.weight":
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], self.sd_module.kernel_size, self.sd_module.stride, self.sd_module.padding, bias=False)
elif is_conv and key == "lora_up.weight" or key == "dyn_down":
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
else:
raise AssertionError(f'Lora layer {self.network_key} matched a layer with unsupported type: {type(self.sd_module).__name__}')
with torch.no_grad():
if weight.shape != module.weight.shape:
weight = weight.reshape(module.weight.shape)
module.weight.copy_(weight)
module.to(device=devices.cpu, dtype=devices.dtype)
module.weight.requires_grad_(False)
return module
def calc_updown(self, orig_weight):
up = self.up_model.weight.to(orig_weight.device)
down = self.down_model.weight.to(orig_weight.device)
output_shape = [up.size(0), down.size(1)]
if self.mid_model is not None:
# cp-decomposition
mid = self.mid_model.weight.to(orig_weight.device)
updown = lyco_helpers.rebuild_cp_decomposition(up, down, mid)
output_shape += mid.shape[2:]
else:
if len(down.shape) == 4:
output_shape += down.shape[2:]
updown = lyco_helpers.rebuild_conventional(up, down, output_shape, self.network.dyn_dim)
return self.finalize_updown(updown, orig_weight, output_shape)
def forward(self, x, y):
self.up_model.to(device=devices.device)
self.down_model.to(device=devices.device)
return y + self.up_model(self.down_model(x)) * self.multiplier() * self.calc_scale()

View File

@ -1,28 +0,0 @@
import network
class ModuleTypeNorm(network.ModuleType):
def create_module(self, net: network.Network, weights: network.NetworkWeights):
if all(x in weights.w for x in ["w_norm", "b_norm"]):
return NetworkModuleNorm(net, weights)
return None
class NetworkModuleNorm(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights):
super().__init__(net, weights)
self.w_norm = weights.w.get("w_norm")
self.b_norm = weights.w.get("b_norm")
def calc_updown(self, orig_weight):
output_shape = self.w_norm.shape
updown = self.w_norm.to(orig_weight.device)
if self.b_norm is not None:
ex_bias = self.b_norm.to(orig_weight.device)
else:
ex_bias = None
return self.finalize_updown(updown, orig_weight, output_shape, ex_bias)

View File

@ -1,82 +0,0 @@
import torch
import network
from lyco_helpers import factorization
from einops import rearrange
class ModuleTypeOFT(network.ModuleType):
def create_module(self, net: network.Network, weights: network.NetworkWeights):
if all(x in weights.w for x in ["oft_blocks"]) or all(x in weights.w for x in ["oft_diag"]):
return NetworkModuleOFT(net, weights)
return None
# Supports both kohya-ss' implementation of COFT https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py
# and KohakuBlueleaf's implementation of OFT/COFT https://github.com/KohakuBlueleaf/LyCORIS/blob/dev/lycoris/modules/diag_oft.py
class NetworkModuleOFT(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights):
super().__init__(net, weights)
self.lin_module = None
self.org_module: list[torch.Module] = [self.sd_module]
self.scale = 1.0
# kohya-ss
if "oft_blocks" in weights.w.keys():
self.is_kohya = True
self.oft_blocks = weights.w["oft_blocks"] # (num_blocks, block_size, block_size)
self.alpha = weights.w["alpha"] # alpha is constraint
self.dim = self.oft_blocks.shape[0] # lora dim
# LyCORIS
elif "oft_diag" in weights.w.keys():
self.is_kohya = False
self.oft_blocks = weights.w["oft_diag"]
# self.alpha is unused
self.dim = self.oft_blocks.shape[1] # (num_blocks, block_size, block_size)
is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear]
is_conv = type(self.sd_module) in [torch.nn.Conv2d]
is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention] # unsupported
if is_linear:
self.out_dim = self.sd_module.out_features
elif is_conv:
self.out_dim = self.sd_module.out_channels
elif is_other_linear:
self.out_dim = self.sd_module.embed_dim
if self.is_kohya:
self.constraint = self.alpha * self.out_dim
self.num_blocks = self.dim
self.block_size = self.out_dim // self.dim
else:
self.constraint = None
self.block_size, self.num_blocks = factorization(self.out_dim, self.dim)
def calc_updown(self, orig_weight):
oft_blocks = self.oft_blocks.to(orig_weight.device)
eye = torch.eye(self.block_size, device=oft_blocks.device)
if self.is_kohya:
block_Q = oft_blocks - oft_blocks.transpose(1, 2) # ensure skew-symmetric orthogonal matrix
norm_Q = torch.norm(block_Q.flatten())
new_norm_Q = torch.clamp(norm_Q, max=self.constraint.to(oft_blocks.device))
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
oft_blocks = torch.matmul(eye + block_Q, (eye - block_Q).float().inverse())
R = oft_blocks.to(orig_weight.device)
# This errors out for MultiheadAttention, might need to be handled up-stream
merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)
merged_weight = torch.einsum(
'k n m, k n ... -> k m ...',
R,
merged_weight
)
merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...')
updown = merged_weight.to(orig_weight.device) - orig_weight.to(merged_weight.dtype)
output_shape = orig_weight.shape
return self.finalize_updown(updown, orig_weight, output_shape)

View File

@ -1,566 +1,127 @@
import gradio as gr
import logging
import os
import re
import lora_patches
import functools
import network
import network_lora
import network_glora
import network_hada
import network_ia3
import network_lokr
import network_full
import network_norm
import network_oft
import torch
from typing import Union
from modules import shared, devices, sd_models, errors, scripts, sd_hijack
import modules.textual_inversion.textual_inversion as textual_inversion
from lora_logger import logger
module_types = [
network_lora.ModuleTypeLora(),
network_hada.ModuleTypeHada(),
network_ia3.ModuleTypeIa3(),
network_lokr.ModuleTypeLokr(),
network_full.ModuleTypeFull(),
network_norm.ModuleTypeNorm(),
network_glora.ModuleTypeGLora(),
network_oft.ModuleTypeOFT(),
]
from modules import shared, sd_models, errors, scripts
from ldm_patched.modules.utils import load_torch_file
from ldm_patched.modules.sd import load_lora_for_models
re_digits = re.compile(r"\d+")
re_x_proj = re.compile(r"(.*)_([qkv]_proj)$")
re_compiled = {}
suffix_conversion = {
"attentions": {},
"resnets": {
"conv1": "in_layers_2",
"conv2": "out_layers_3",
"norm1": "in_layers_0",
"norm2": "out_layers_0",
"time_emb_proj": "emb_layers_1",
"conv_shortcut": "skip_connection",
}
}
@functools.lru_cache(maxsize=5)
def load_lora_state_dict(filename):
return load_torch_file(filename, safe_load=True)
def convert_diffusers_name_to_compvis(key, is_sd2):
def match(match_list, regex_text):
regex = re_compiled.get(regex_text)
if regex is None:
regex = re.compile(regex_text)
re_compiled[regex_text] = regex
r = re.match(regex, key)
if not r:
return False
match_list.clear()
match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()])
return True
m = []
if match(m, r"lora_unet_conv_in(.*)"):
return f'diffusion_model_input_blocks_0_0{m[0]}'
if match(m, r"lora_unet_conv_out(.*)"):
return f'diffusion_model_out_2{m[0]}'
if match(m, r"lora_unet_time_embedding_linear_(\d+)(.*)"):
return f"diffusion_model_time_embed_{m[0] * 2 - 2}{m[1]}"
if match(m, r"lora_unet_down_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
if match(m, r"lora_unet_mid_block_(attentions|resnets)_(\d+)_(.+)"):
suffix = suffix_conversion.get(m[0], {}).get(m[2], m[2])
return f"diffusion_model_middle_block_{1 if m[0] == 'attentions' else m[1] * 2}_{suffix}"
if match(m, r"lora_unet_up_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
return f"diffusion_model_output_blocks_{m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
if match(m, r"lora_unet_down_blocks_(\d+)_downsamplers_0_conv"):
return f"diffusion_model_input_blocks_{3 + m[0] * 3}_0_op"
if match(m, r"lora_unet_up_blocks_(\d+)_upsamplers_0_conv"):
return f"diffusion_model_output_blocks_{2 + m[0] * 3}_{2 if m[0]>0 else 1}_conv"
if match(m, r"lora_te_text_model_encoder_layers_(\d+)_(.+)"):
if is_sd2:
if 'mlp_fc1' in m[1]:
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
elif 'mlp_fc2' in m[1]:
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
else:
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"
return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}"
if match(m, r"lora_te2_text_model_encoder_layers_(\d+)_(.+)"):
if 'mlp_fc1' in m[1]:
return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
elif 'mlp_fc2' in m[1]:
return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
else:
return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"
return key
pass
def assign_network_names_to_compvis_modules(sd_model):
network_layer_mapping = {}
if shared.sd_model.is_sdxl:
for i, embedder in enumerate(shared.sd_model.conditioner.embedders):
if not hasattr(embedder, 'wrapped'):
continue
for name, module in embedder.wrapped.named_modules():
network_name = f'{i}_{name.replace(".", "_")}'
network_layer_mapping[network_name] = module
module.network_layer_name = network_name
else:
for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules():
network_name = name.replace(".", "_")
network_layer_mapping[network_name] = module
module.network_layer_name = network_name
for name, module in shared.sd_model.model.named_modules():
network_name = name.replace(".", "_")
network_layer_mapping[network_name] = module
module.network_layer_name = network_name
sd_model.network_layer_mapping = network_layer_mapping
pass
def load_network(name, network_on_disk):
net = network.Network(name, network_on_disk)
net.mtime = os.path.getmtime(network_on_disk.filename)
sd = sd_models.read_state_dict(network_on_disk.filename)
# this should not be needed but is here as an emergency fix for an unknown error people are experiencing in 1.2.0
if not hasattr(shared.sd_model, 'network_layer_mapping'):
assign_network_names_to_compvis_modules(shared.sd_model)
keys_failed_to_match = {}
is_sd2 = 'model_transformer_resblocks' in shared.sd_model.network_layer_mapping
matched_networks = {}
bundle_embeddings = {}
for key_network, weight in sd.items():
key_network_without_network_parts, _, network_part = key_network.partition(".")
if key_network_without_network_parts == "bundle_emb":
emb_name, vec_name = network_part.split(".", 1)
emb_dict = bundle_embeddings.get(emb_name, {})
if vec_name.split('.')[0] == 'string_to_param':
_, k2 = vec_name.split('.', 1)
emb_dict['string_to_param'] = {k2: weight}
else:
emb_dict[vec_name] = weight
bundle_embeddings[emb_name] = emb_dict
key = convert_diffusers_name_to_compvis(key_network_without_network_parts, is_sd2)
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
if sd_module is None:
m = re_x_proj.match(key)
if m:
sd_module = shared.sd_model.network_layer_mapping.get(m.group(1), None)
# SDXL loras seem to already have correct compvis keys, so only need to replace "lora_unet" with "diffusion_model"
if sd_module is None and "lora_unet" in key_network_without_network_parts:
key = key_network_without_network_parts.replace("lora_unet", "diffusion_model")
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
elif sd_module is None and "lora_te1_text_model" in key_network_without_network_parts:
key = key_network_without_network_parts.replace("lora_te1_text_model", "0_transformer_text_model")
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
# some SD1 Loras also have correct compvis keys
if sd_module is None:
key = key_network_without_network_parts.replace("lora_te1_text_model", "transformer_text_model")
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
# kohya_ss OFT module
elif sd_module is None and "oft_unet" in key_network_without_network_parts:
key = key_network_without_network_parts.replace("oft_unet", "diffusion_model")
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
# KohakuBlueLeaf OFT module
if sd_module is None and "oft_diag" in key:
key = key_network_without_network_parts.replace("lora_unet", "diffusion_model")
key = key_network_without_network_parts.replace("lora_te1_text_model", "0_transformer_text_model")
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
if sd_module is None:
keys_failed_to_match[key_network] = key
continue
if key not in matched_networks:
matched_networks[key] = network.NetworkWeights(network_key=key_network, sd_key=key, w={}, sd_module=sd_module)
matched_networks[key].w[network_part] = weight
for key, weights in matched_networks.items():
net_module = None
for nettype in module_types:
net_module = nettype.create_module(net, weights)
if net_module is not None:
break
if net_module is None:
raise AssertionError(f"Could not find a module type (out of {', '.join([x.__class__.__name__ for x in module_types])}) that would accept those keys: {', '.join(weights.w)}")
net.modules[key] = net_module
embeddings = {}
for emb_name, data in bundle_embeddings.items():
embedding = textual_inversion.create_embedding_from_data(data, emb_name, filename=network_on_disk.filename + "/" + emb_name)
embedding.loaded = None
embeddings[emb_name] = embedding
net.bundle_embeddings = embeddings
if keys_failed_to_match:
logging.debug(f"Network {network_on_disk.filename} didn't match keys: {keys_failed_to_match}")
return net
pass
def purge_networks_from_memory():
while len(networks_in_memory) > shared.opts.lora_in_memory_limit and len(networks_in_memory) > 0:
name = next(iter(networks_in_memory))
networks_in_memory.pop(name, None)
devices.torch_gc()
pass
def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=None):
emb_db = sd_hijack.model_hijack.embedding_db
already_loaded = {}
global lora_state_dict_cache
for net in loaded_networks:
if net.name in names:
already_loaded[net.name] = net
for emb_name, embedding in net.bundle_embeddings.items():
if embedding.loaded:
emb_db.register_embedding_by_name(None, shared.sd_model, emb_name)
loaded_networks.clear()
current_sd = sd_models.model_data.get_sd_model()
if current_sd is None:
return
networks_on_disk = [available_networks.get(name, None) if name.lower() in forbidden_network_aliases else available_network_aliases.get(name, None) for name in names]
if any(x is None for x in networks_on_disk):
list_available_networks()
networks_on_disk = [available_networks.get(name, None) if name.lower() in forbidden_network_aliases else available_network_aliases.get(name, None) for name in names]
failed_to_load_networks = []
compiled_lora_targets = []
for a, b, c in zip(networks_on_disk, unet_multipliers, te_multipliers):
compiled_lora_targets.append([a.filename, b, c])
for i, (network_on_disk, name) in enumerate(zip(networks_on_disk, names)):
net = already_loaded.get(name, None)
compiled_lora_targets_hash = str(compiled_lora_targets)
if network_on_disk is not None:
if net is None:
net = networks_in_memory.get(name)
if current_sd.current_lora_hash == compiled_lora_targets_hash:
return
if net is None or os.path.getmtime(network_on_disk.filename) > net.mtime:
try:
net = load_network(name, network_on_disk)
current_sd.current_lora_hash = compiled_lora_targets_hash
current_sd.forge_objects.unet = current_sd.forge_objects_original.unet
current_sd.forge_objects.clip = current_sd.forge_objects_original.clip
networks_in_memory.pop(name, None)
networks_in_memory[name] = net
except Exception as e:
errors.display(e, f"loading network {network_on_disk.filename}")
continue
for filename, strength_model, strength_clip in compiled_lora_targets:
lora_sd = load_lora_state_dict(filename)
current_sd.forge_objects.unet, current_sd.forge_objects.clip = load_lora_for_models(
current_sd.forge_objects.unet, current_sd.forge_objects.clip, lora_sd, strength_model, strength_clip)
net.mentioned_name = name
network_on_disk.read_hash()
if net is None:
failed_to_load_networks.append(name)
logging.info(f"Couldn't find network with name {name}")
continue
net.te_multiplier = te_multipliers[i] if te_multipliers else 1.0
net.unet_multiplier = unet_multipliers[i] if unet_multipliers else 1.0
net.dyn_dim = dyn_dims[i] if dyn_dims else 1.0
loaded_networks.append(net)
for emb_name, embedding in net.bundle_embeddings.items():
if embedding.loaded is None and emb_name in emb_db.word_embeddings:
logger.warning(
f'Skip bundle embedding: "{emb_name}"'
' as it was already loaded from embeddings folder'
)
continue
embedding.loaded = False
if emb_db.expected_shape == -1 or emb_db.expected_shape == embedding.shape:
embedding.loaded = True
emb_db.register_embedding(embedding, shared.sd_model)
else:
emb_db.skipped_embeddings[name] = embedding
if failed_to_load_networks:
lora_not_found_message = f'Lora not found: {", ".join(failed_to_load_networks)}'
sd_hijack.model_hijack.comments.append(lora_not_found_message)
if shared.opts.lora_not_found_warning_console:
print(f'\n{lora_not_found_message}\n')
if shared.opts.lora_not_found_gradio_warning:
gr.Warning(lora_not_found_message)
purge_networks_from_memory()
current_sd.forge_objects_after_applying_lora = current_sd.forge_objects.shallow_copy()
return
def network_restore_weights_from_backup(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.GroupNorm, torch.nn.LayerNorm, torch.nn.MultiheadAttention]):
weights_backup = getattr(self, "network_weights_backup", None)
bias_backup = getattr(self, "network_bias_backup", None)
if weights_backup is None and bias_backup is None:
return
if weights_backup is not None:
if isinstance(self, torch.nn.MultiheadAttention):
self.in_proj_weight.copy_(weights_backup[0])
self.out_proj.weight.copy_(weights_backup[1])
else:
self.weight.copy_(weights_backup)
if bias_backup is not None:
if isinstance(self, torch.nn.MultiheadAttention):
self.out_proj.bias.copy_(bias_backup)
else:
self.bias.copy_(bias_backup)
else:
if isinstance(self, torch.nn.MultiheadAttention):
self.out_proj.bias = None
else:
self.bias = None
pass
def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.GroupNorm, torch.nn.LayerNorm, torch.nn.MultiheadAttention]):
"""
Applies the currently selected set of networks to the weights of torch layer self.
If weights already have this particular set of networks applied, does nothing.
If not, restores orginal weights from backup and alters weights according to networks.
"""
network_layer_name = getattr(self, 'network_layer_name', None)
if network_layer_name is None:
return
current_names = getattr(self, "network_current_names", ())
wanted_names = tuple((x.name, x.te_multiplier, x.unet_multiplier, x.dyn_dim) for x in loaded_networks)
weights_backup = getattr(self, "network_weights_backup", None)
if weights_backup is None and wanted_names != ():
if current_names != ():
raise RuntimeError("no backup weights found and current weights are not unchanged")
if isinstance(self, torch.nn.MultiheadAttention):
weights_backup = (self.in_proj_weight.to(devices.cpu, copy=True), self.out_proj.weight.to(devices.cpu, copy=True))
else:
weights_backup = self.weight.to(devices.cpu, copy=True)
self.network_weights_backup = weights_backup
bias_backup = getattr(self, "network_bias_backup", None)
if bias_backup is None:
if isinstance(self, torch.nn.MultiheadAttention) and self.out_proj.bias is not None:
bias_backup = self.out_proj.bias.to(devices.cpu, copy=True)
elif getattr(self, 'bias', None) is not None:
bias_backup = self.bias.to(devices.cpu, copy=True)
else:
bias_backup = None
self.network_bias_backup = bias_backup
if current_names != wanted_names:
network_restore_weights_from_backup(self)
for net in loaded_networks:
module = net.modules.get(network_layer_name, None)
if module is not None and hasattr(self, 'weight'):
try:
with torch.no_grad():
if getattr(self, 'fp16_weight', None) is None:
weight = self.weight
bias = self.bias
else:
weight = self.fp16_weight.clone().to(self.weight.device)
bias = getattr(self, 'fp16_bias', None)
if bias is not None:
bias = bias.clone().to(self.bias.device)
updown, ex_bias = module.calc_updown(weight)
if len(weight.shape) == 4 and weight.shape[1] == 9:
# inpainting model. zero pad updown to make channel[1] 4 to 9
updown = torch.nn.functional.pad(updown, (0, 0, 0, 0, 0, 5))
self.weight.copy_((weight.to(dtype=updown.dtype) + updown).to(dtype=self.weight.dtype))
if ex_bias is not None and hasattr(self, 'bias'):
if self.bias is None:
self.bias = torch.nn.Parameter(ex_bias).to(self.weight.dtype)
else:
self.bias.copy_((bias + ex_bias).to(dtype=self.bias.dtype))
except RuntimeError as e:
logging.debug(f"Network {net.name} layer {network_layer_name}: {e}")
extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
continue
module_q = net.modules.get(network_layer_name + "_q_proj", None)
module_k = net.modules.get(network_layer_name + "_k_proj", None)
module_v = net.modules.get(network_layer_name + "_v_proj", None)
module_out = net.modules.get(network_layer_name + "_out_proj", None)
if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out:
try:
with torch.no_grad():
updown_q, _ = module_q.calc_updown(self.in_proj_weight)
updown_k, _ = module_k.calc_updown(self.in_proj_weight)
updown_v, _ = module_v.calc_updown(self.in_proj_weight)
updown_qkv = torch.vstack([updown_q, updown_k, updown_v])
updown_out, ex_bias = module_out.calc_updown(self.out_proj.weight)
self.in_proj_weight += updown_qkv
self.out_proj.weight += updown_out
if ex_bias is not None:
if self.out_proj.bias is None:
self.out_proj.bias = torch.nn.Parameter(ex_bias)
else:
self.out_proj.bias += ex_bias
except RuntimeError as e:
logging.debug(f"Network {net.name} layer {network_layer_name}: {e}")
extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
continue
if module is None:
continue
logging.debug(f"Network {net.name} layer {network_layer_name}: couldn't find supported operation")
extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
self.network_current_names = wanted_names
pass
def network_forward(org_module, input, original_forward):
"""
Old way of applying Lora by executing operations during layer's forward.
Stacking many loras this way results in big performance degradation.
"""
if len(loaded_networks) == 0:
return original_forward(org_module, input)
input = devices.cond_cast_unet(input)
network_restore_weights_from_backup(org_module)
network_reset_cached_weight(org_module)
y = original_forward(org_module, input)
network_layer_name = getattr(org_module, 'network_layer_name', None)
for lora in loaded_networks:
module = lora.modules.get(network_layer_name, None)
if module is None:
continue
y = module.forward(input, y)
return y
pass
def network_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]):
self.network_current_names = ()
self.network_weights_backup = None
self.network_bias_backup = None
pass
def network_Linear_forward(self, input):
if shared.opts.lora_functional:
return network_forward(self, input, originals.Linear_forward)
network_apply_weights(self)
return originals.Linear_forward(self, input)
pass
def network_Linear_load_state_dict(self, *args, **kwargs):
network_reset_cached_weight(self)
return originals.Linear_load_state_dict(self, *args, **kwargs)
pass
def network_Conv2d_forward(self, input):
if shared.opts.lora_functional:
return network_forward(self, input, originals.Conv2d_forward)
network_apply_weights(self)
return originals.Conv2d_forward(self, input)
pass
def network_Conv2d_load_state_dict(self, *args, **kwargs):
network_reset_cached_weight(self)
return originals.Conv2d_load_state_dict(self, *args, **kwargs)
pass
def network_GroupNorm_forward(self, input):
if shared.opts.lora_functional:
return network_forward(self, input, originals.GroupNorm_forward)
network_apply_weights(self)
return originals.GroupNorm_forward(self, input)
pass
def network_GroupNorm_load_state_dict(self, *args, **kwargs):
network_reset_cached_weight(self)
return originals.GroupNorm_load_state_dict(self, *args, **kwargs)
pass
def network_LayerNorm_forward(self, input):
if shared.opts.lora_functional:
return network_forward(self, input, originals.LayerNorm_forward)
network_apply_weights(self)
return originals.LayerNorm_forward(self, input)
pass
def network_LayerNorm_load_state_dict(self, *args, **kwargs):
network_reset_cached_weight(self)
return originals.LayerNorm_load_state_dict(self, *args, **kwargs)
pass
def network_MultiheadAttention_forward(self, *args, **kwargs):
network_apply_weights(self)
return originals.MultiheadAttention_forward(self, *args, **kwargs)
pass
def network_MultiheadAttention_load_state_dict(self, *args, **kwargs):
network_reset_cached_weight(self)
return originals.MultiheadAttention_load_state_dict(self, *args, **kwargs)
pass
def list_available_networks():
@ -573,7 +134,6 @@ def list_available_networks():
os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True)
candidates = list(shared.walk_files(shared.cmd_opts.lora_dir, allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
candidates += list(shared.walk_files(shared.cmd_opts.lyco_dir_backcompat, allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
for filename in candidates:
if os.path.isdir(filename):
continue

View File

@ -4,4 +4,3 @@ from modules import paths
def preload(parser):
parser.add_argument("--lora-dir", type=str, help="Path to directory with Lora networks.", default=os.path.join(paths.models_path, 'Lora'))
parser.add_argument("--lyco-dir-backcompat", type=str, help="Path to directory with LyCORIS networks (for backawards compatibility; can also use --lyco-dir).", default=os.path.join(paths.models_path, 'LyCORIS'))

View File

@ -21,7 +21,6 @@ def before_ui():
networks.extra_network_lora = extra_networks_lora.ExtraNetworkLora()
extra_networks.register_extra_network(networks.extra_network_lora)
extra_networks.register_extra_network_alias(networks.extra_network_lora, "lyco")
networks.originals = lora_patches.LoraPatches()

View File

@ -84,7 +84,7 @@ class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage):
yield item
def allowed_directories_for_previews(self):
return [shared.cmd_opts.lora_dir, shared.cmd_opts.lyco_dir_backcompat]
return [shared.cmd_opts.lora_dir]
def create_user_metadata_editor(self, ui, tabname):
return LoraUserMetadataEditor(ui, tabname, self)

View File

@ -5,7 +5,7 @@ import torch
from PIL import Image
from modules import devices, modelloader, script_callbacks, shared, upscaler_utils
from modules.upscaler import Upscaler, UpscalerData
from modules.upscaler import Upscaler, UpscalerData, prepare_free_memory
SWINIR_MODEL_URL = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR-L_x4_GAN.pth"
@ -33,6 +33,8 @@ class UpscalerSwinIR(Upscaler):
self.scalers = scalers
def do_upscale(self, img: Image.Image, model_file: str) -> Image.Image:
prepare_free_memory()
current_config = (model_file, shared.opts.SWIN_tile)
if self._cached_model_config == current_config:

View File

@ -0,0 +1,185 @@
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea
*.pt
*.pth
*.ckpt
*.bin
*.safetensors
# Editor setting metadata
.idea/
.vscode/
detected_maps/
annotator/downloads/
# test results and expectations
web_tests/results/
web_tests/expectations/
tests/web_api/full_coverage/results/
tests/web_api/full_coverage/expectations/
*_diff.png
# Presets
presets/
# Ignore existing dir of hand refiner if exists.
annotator/hand_refiner_portable

View File

@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.

View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2021 Miaomiao Li
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1,172 @@
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
import fnmatch
import cv2
import sys
import numpy as np
from modules import devices
from einops import rearrange
from annotator.annotator_path import models_path
import torchvision
from torchvision.models import MobileNet_V2_Weights
from torchvision import transforms
COLOR_BACKGROUND = (255,255,0)
COLOR_HAIR = (0,0,255)
COLOR_EYE = (255,0,0)
COLOR_MOUTH = (255,255,255)
COLOR_FACE = (0,255,0)
COLOR_SKIN = (0,255,255)
COLOR_CLOTHES = (255,0,255)
PALETTE = [COLOR_BACKGROUND,COLOR_HAIR,COLOR_EYE,COLOR_MOUTH,COLOR_FACE,COLOR_SKIN,COLOR_CLOTHES]
class UNet(nn.Module):
def __init__(self):
super(UNet, self).__init__()
self.NUM_SEG_CLASSES = 7 # Background, hair, face, eye, mouth, skin, clothes
mobilenet_v2 = torchvision.models.mobilenet_v2(weights=MobileNet_V2_Weights.IMAGENET1K_V1)
mob_blocks = mobilenet_v2.features
# Encoder
self.en_block0 = nn.Sequential( # in_ch=3 out_ch=16
mob_blocks[0],
mob_blocks[1]
)
self.en_block1 = nn.Sequential( # in_ch=16 out_ch=24
mob_blocks[2],
mob_blocks[3],
)
self.en_block2 = nn.Sequential( # in_ch=24 out_ch=32
mob_blocks[4],
mob_blocks[5],
mob_blocks[6],
)
self.en_block3 = nn.Sequential( # in_ch=32 out_ch=96
mob_blocks[7],
mob_blocks[8],
mob_blocks[9],
mob_blocks[10],
mob_blocks[11],
mob_blocks[12],
mob_blocks[13],
)
self.en_block4 = nn.Sequential( # in_ch=96 out_ch=160
mob_blocks[14],
mob_blocks[15],
mob_blocks[16],
)
# Decoder
self.de_block4 = nn.Sequential( # in_ch=160 out_ch=96
nn.UpsamplingNearest2d(scale_factor=2),
nn.Conv2d(160, 96, kernel_size=3, padding=1),
nn.InstanceNorm2d(96),
nn.LeakyReLU(0.1),
nn.Dropout(p=0.2)
)
self.de_block3 = nn.Sequential( # in_ch=96x2 out_ch=32
nn.UpsamplingNearest2d(scale_factor=2),
nn.Conv2d(96*2, 32, kernel_size=3, padding=1),
nn.InstanceNorm2d(32),
nn.LeakyReLU(0.1),
nn.Dropout(p=0.2)
)
self.de_block2 = nn.Sequential( # in_ch=32x2 out_ch=24
nn.UpsamplingNearest2d(scale_factor=2),
nn.Conv2d(32*2, 24, kernel_size=3, padding=1),
nn.InstanceNorm2d(24),
nn.LeakyReLU(0.1),
nn.Dropout(p=0.2)
)
self.de_block1 = nn.Sequential( # in_ch=24x2 out_ch=16
nn.UpsamplingNearest2d(scale_factor=2),
nn.Conv2d(24*2, 16, kernel_size=3, padding=1),
nn.InstanceNorm2d(16),
nn.LeakyReLU(0.1),
nn.Dropout(p=0.2)
)
self.de_block0 = nn.Sequential( # in_ch=16x2 out_ch=7
nn.UpsamplingNearest2d(scale_factor=2),
nn.Conv2d(16*2, self.NUM_SEG_CLASSES, kernel_size=3, padding=1),
nn.Softmax2d()
)
def forward(self, x):
e0 = self.en_block0(x)
e1 = self.en_block1(e0)
e2 = self.en_block2(e1)
e3 = self.en_block3(e2)
e4 = self.en_block4(e3)
d4 = self.de_block4(e4)
d4 = F.interpolate(d4, size=e3.size()[2:], mode='bilinear', align_corners=True)
c4 = torch.cat((d4,e3),1)
d3 = self.de_block3(c4)
d3 = F.interpolate(d3, size=e2.size()[2:], mode='bilinear', align_corners=True)
c3 = torch.cat((d3,e2),1)
d2 = self.de_block2(c3)
d2 = F.interpolate(d2, size=e1.size()[2:], mode='bilinear', align_corners=True)
c2 =torch.cat((d2,e1),1)
d1 = self.de_block1(c2)
d1 = F.interpolate(d1, size=e0.size()[2:], mode='bilinear', align_corners=True)
c1 = torch.cat((d1,e0),1)
y = self.de_block0(c1)
return y
class AnimeFaceSegment:
model_dir = os.path.join(models_path, "anime_face_segment")
def __init__(self):
self.model = None
self.device = devices.get_device_for("controlnet")
def load_model(self):
remote_model_path = "https://huggingface.co/bdsqlsz/qinglong_controlnet-lllite/resolve/main/Annotators/UNet.pth"
modelpath = os.path.join(self.model_dir, "UNet.pth")
if not os.path.exists(modelpath):
from modules.modelloader import load_file_from_url
load_file_from_url(remote_model_path, model_dir=self.model_dir)
net = UNet()
ckpt = torch.load(modelpath, map_location=self.device)
for key in list(ckpt.keys()):
if 'module.' in key:
ckpt[key.replace('module.', '')] = ckpt[key]
del ckpt[key]
net.load_state_dict(ckpt)
net.eval()
self.model = net.to(self.device)
def unload_model(self):
if self.model is not None:
self.model.cpu()
def __call__(self, input_image):
if self.model is None:
self.load_model()
self.model.to(self.device)
transform = transforms.Compose([
transforms.Resize(512,interpolation=transforms.InterpolationMode.BICUBIC),
transforms.ToTensor(),])
img = Image.fromarray(input_image)
with torch.no_grad():
img = transform(img).unsqueeze(dim=0).to(self.device)
seg = self.model(img).squeeze(dim=0)
seg = seg.cpu().detach().numpy()
img = rearrange(seg,'h w c -> w c h')
img = [[PALETTE[np.argmax(val)] for val in buf]for buf in img]
return np.array(img).astype(np.uint8)

View File

@ -0,0 +1,11 @@
import os
from modules_forge.shared import preprocessor_dir
models_path = preprocessor_dir
clip_vision_path = os.path.join(preprocessor_dir, 'clip_vision')
os.makedirs(models_path, exist_ok=True)
os.makedirs(clip_vision_path, exist_ok=True)
print(f'ControlNet preprocessor location: {models_path}')

View File

@ -0,0 +1,14 @@
import cv2
def apply_binary(img, bin_threshold):
img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
if bin_threshold == 0 or bin_threshold == 255:
# Otsu's threshold
otsu_threshold, img_bin = cv2.threshold(img_gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
print("Otsu threshold:", otsu_threshold)
else:
_, img_bin = cv2.threshold(img_gray, bin_threshold, 255, cv2.THRESH_BINARY_INV)
return cv2.cvtColor(img_bin, cv2.COLOR_GRAY2RGB)

View File

@ -0,0 +1,5 @@
import cv2
def apply_canny(img, low_threshold, high_threshold):
return cv2.Canny(img, low_threshold, high_threshold)

View File

@ -0,0 +1,20 @@
import cv2
def cv2_resize_shortest_edge(image, size):
h, w = image.shape[:2]
if h < w:
new_h = size
new_w = int(round(w / h * size))
else:
new_w = size
new_h = int(round(h / w * size))
resized_image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_AREA)
return resized_image
def apply_color(img, res=512):
img = cv2_resize_shortest_edge(img, res)
h, w = img.shape[:2]
input_img_color = cv2.resize(img, (w//64, h//64), interpolation=cv2.INTER_CUBIC)
input_img_color = cv2.resize(input_img_color, (w, h), interpolation=cv2.INTER_NEAREST)
return input_img_color

View File

@ -0,0 +1,57 @@
import torchvision # Fix issue Unknown builtin op: torchvision::nms
import cv2
import numpy as np
import torch
from einops import rearrange
from .densepose import DensePoseMaskedColormapResultsVisualizer, _extract_i_from_iuvarr, densepose_chart_predictor_output_to_result_with_confidences
from modules import devices
from annotator.annotator_path import models_path
import os
N_PART_LABELS = 24
result_visualizer = DensePoseMaskedColormapResultsVisualizer(
alpha=1,
data_extractor=_extract_i_from_iuvarr,
segm_extractor=_extract_i_from_iuvarr,
val_scale = 255.0 / N_PART_LABELS
)
remote_torchscript_path = "https://huggingface.co/LayerNorm/DensePose-TorchScript-with-hint-image/resolve/main/densepose_r50_fpn_dl.torchscript"
torchscript_model = None
model_dir = os.path.join(models_path, "densepose")
def apply_densepose(input_image, cmap="viridis"):
global torchscript_model
if torchscript_model is None:
model_path = os.path.join(model_dir, "densepose_r50_fpn_dl.torchscript")
if not os.path.exists(model_path):
from modules.modelloader import load_file_from_url
load_file_from_url(remote_torchscript_path, model_dir=model_dir)
torchscript_model = torch.jit.load(model_path, map_location="cpu").to(devices.get_device_for("controlnet")).eval()
H, W = input_image.shape[:2]
hint_image_canvas = np.zeros([H, W], dtype=np.uint8)
hint_image_canvas = np.tile(hint_image_canvas[:, :, np.newaxis], [1, 1, 3])
input_image = rearrange(torch.from_numpy(input_image).to(devices.get_device_for("controlnet")), 'h w c -> c h w')
pred_boxes, corase_segm, fine_segm, u, v = torchscript_model(input_image)
extractor = densepose_chart_predictor_output_to_result_with_confidences
densepose_results = [extractor(pred_boxes[i:i+1], corase_segm[i:i+1], fine_segm[i:i+1], u[i:i+1], v[i:i+1]) for i in range(len(pred_boxes))]
if cmap=="viridis":
result_visualizer.mask_visualizer.cmap = cv2.COLORMAP_VIRIDIS
hint_image = result_visualizer.visualize(hint_image_canvas, densepose_results)
hint_image = cv2.cvtColor(hint_image, cv2.COLOR_BGR2RGB)
hint_image[:, :, 0][hint_image[:, :, 0] == 0] = 68
hint_image[:, :, 1][hint_image[:, :, 1] == 0] = 1
hint_image[:, :, 2][hint_image[:, :, 2] == 0] = 84
else:
result_visualizer.mask_visualizer.cmap = cv2.COLORMAP_PARULA
hint_image = result_visualizer.visualize(hint_image_canvas, densepose_results)
hint_image = cv2.cvtColor(hint_image, cv2.COLOR_BGR2RGB)
return hint_image
def unload_model():
global torchscript_model
if torchscript_model is not None:
torchscript_model.cpu()

View File

@ -0,0 +1,347 @@
from typing import Tuple
import math
import numpy as np
from enum import IntEnum
from typing import List, Tuple, Union
import torch
from torch.nn import functional as F
import logging
import cv2
Image = np.ndarray
Boxes = torch.Tensor
ImageSizeType = Tuple[int, int]
_RawBoxType = Union[List[float], Tuple[float, ...], torch.Tensor, np.ndarray]
IntTupleBox = Tuple[int, int, int, int]
class BoxMode(IntEnum):
"""
Enum of different ways to represent a box.
"""
XYXY_ABS = 0
"""
(x0, y0, x1, y1) in absolute floating points coordinates.
The coordinates in range [0, width or height].
"""
XYWH_ABS = 1
"""
(x0, y0, w, h) in absolute floating points coordinates.
"""
XYXY_REL = 2
"""
Not yet supported!
(x0, y0, x1, y1) in range [0, 1]. They are relative to the size of the image.
"""
XYWH_REL = 3
"""
Not yet supported!
(x0, y0, w, h) in range [0, 1]. They are relative to the size of the image.
"""
XYWHA_ABS = 4
"""
(xc, yc, w, h, a) in absolute floating points coordinates.
(xc, yc) is the center of the rotated box, and the angle a is in degrees ccw.
"""
@staticmethod
def convert(box: _RawBoxType, from_mode: "BoxMode", to_mode: "BoxMode") -> _RawBoxType:
"""
Args:
box: can be a k-tuple, k-list or an Nxk array/tensor, where k = 4 or 5
from_mode, to_mode (BoxMode)
Returns:
The converted box of the same type.
"""
if from_mode == to_mode:
return box
original_type = type(box)
is_numpy = isinstance(box, np.ndarray)
single_box = isinstance(box, (list, tuple))
if single_box:
assert len(box) == 4 or len(box) == 5, (
"BoxMode.convert takes either a k-tuple/list or an Nxk array/tensor,"
" where k == 4 or 5"
)
arr = torch.tensor(box)[None, :]
else:
# avoid modifying the input box
if is_numpy:
arr = torch.from_numpy(np.asarray(box)).clone()
else:
arr = box.clone()
assert to_mode not in [BoxMode.XYXY_REL, BoxMode.XYWH_REL] and from_mode not in [
BoxMode.XYXY_REL,
BoxMode.XYWH_REL,
], "Relative mode not yet supported!"
if from_mode == BoxMode.XYWHA_ABS and to_mode == BoxMode.XYXY_ABS:
assert (
arr.shape[-1] == 5
), "The last dimension of input shape must be 5 for XYWHA format"
original_dtype = arr.dtype
arr = arr.double()
w = arr[:, 2]
h = arr[:, 3]
a = arr[:, 4]
c = torch.abs(torch.cos(a * math.pi / 180.0))
s = torch.abs(torch.sin(a * math.pi / 180.0))
# This basically computes the horizontal bounding rectangle of the rotated box
new_w = c * w + s * h
new_h = c * h + s * w
# convert center to top-left corner
arr[:, 0] -= new_w / 2.0
arr[:, 1] -= new_h / 2.0
# bottom-right corner
arr[:, 2] = arr[:, 0] + new_w
arr[:, 3] = arr[:, 1] + new_h
arr = arr[:, :4].to(dtype=original_dtype)
elif from_mode == BoxMode.XYWH_ABS and to_mode == BoxMode.XYWHA_ABS:
original_dtype = arr.dtype
arr = arr.double()
arr[:, 0] += arr[:, 2] / 2.0
arr[:, 1] += arr[:, 3] / 2.0
angles = torch.zeros((arr.shape[0], 1), dtype=arr.dtype)
arr = torch.cat((arr, angles), axis=1).to(dtype=original_dtype)
else:
if to_mode == BoxMode.XYXY_ABS and from_mode == BoxMode.XYWH_ABS:
arr[:, 2] += arr[:, 0]
arr[:, 3] += arr[:, 1]
elif from_mode == BoxMode.XYXY_ABS and to_mode == BoxMode.XYWH_ABS:
arr[:, 2] -= arr[:, 0]
arr[:, 3] -= arr[:, 1]
else:
raise NotImplementedError(
"Conversion from BoxMode {} to {} is not supported yet".format(
from_mode, to_mode
)
)
if single_box:
return original_type(arr.flatten().tolist())
if is_numpy:
return arr.numpy()
else:
return arr
class MatrixVisualizer:
"""
Base visualizer for matrix data
"""
def __init__(
self,
inplace=True,
cmap=cv2.COLORMAP_PARULA,
val_scale=1.0,
alpha=0.7,
interp_method_matrix=cv2.INTER_LINEAR,
interp_method_mask=cv2.INTER_NEAREST,
):
self.inplace = inplace
self.cmap = cmap
self.val_scale = val_scale
self.alpha = alpha
self.interp_method_matrix = interp_method_matrix
self.interp_method_mask = interp_method_mask
def visualize(self, image_bgr, mask, matrix, bbox_xywh):
self._check_image(image_bgr)
self._check_mask_matrix(mask, matrix)
if self.inplace:
image_target_bgr = image_bgr
else:
image_target_bgr = image_bgr * 0
x, y, w, h = [int(v) for v in bbox_xywh]
if w <= 0 or h <= 0:
return image_bgr
mask, matrix = self._resize(mask, matrix, w, h)
mask_bg = np.tile((mask == 0)[:, :, np.newaxis], [1, 1, 3])
matrix_scaled = matrix.astype(np.float32) * self.val_scale
_EPSILON = 1e-6
if np.any(matrix_scaled > 255 + _EPSILON):
logger = logging.getLogger(__name__)
logger.warning(
f"Matrix has values > {255 + _EPSILON} after " f"scaling, clipping to [0..255]"
)
matrix_scaled_8u = matrix_scaled.clip(0, 255).astype(np.uint8)
matrix_vis = cv2.applyColorMap(matrix_scaled_8u, self.cmap)
matrix_vis[mask_bg] = image_target_bgr[y : y + h, x : x + w, :][mask_bg]
image_target_bgr[y : y + h, x : x + w, :] = (
image_target_bgr[y : y + h, x : x + w, :] * (1.0 - self.alpha) + matrix_vis * self.alpha
)
return image_target_bgr.astype(np.uint8)
def _resize(self, mask, matrix, w, h):
if (w != mask.shape[1]) or (h != mask.shape[0]):
mask = cv2.resize(mask, (w, h), self.interp_method_mask)
if (w != matrix.shape[1]) or (h != matrix.shape[0]):
matrix = cv2.resize(matrix, (w, h), self.interp_method_matrix)
return mask, matrix
def _check_image(self, image_rgb):
assert len(image_rgb.shape) == 3
assert image_rgb.shape[2] == 3
assert image_rgb.dtype == np.uint8
def _check_mask_matrix(self, mask, matrix):
assert len(matrix.shape) == 2
assert len(mask.shape) == 2
assert mask.dtype == np.uint8
class DensePoseResultsVisualizer:
def visualize(
self,
image_bgr: Image,
results,
) -> Image:
context = self.create_visualization_context(image_bgr)
for i, result in enumerate(results):
boxes_xywh, labels, uv = result
iuv_array = torch.cat(
(labels[None].type(torch.float32), uv * 255.0)
).type(torch.uint8)
self.visualize_iuv_arr(context, iuv_array.cpu().numpy(), boxes_xywh)
image_bgr = self.context_to_image_bgr(context)
return image_bgr
def create_visualization_context(self, image_bgr: Image):
return image_bgr
def visualize_iuv_arr(self, context, iuv_arr: np.ndarray, bbox_xywh) -> None:
pass
def context_to_image_bgr(self, context):
return context
def get_image_bgr_from_context(self, context):
return context
class DensePoseMaskedColormapResultsVisualizer(DensePoseResultsVisualizer):
def __init__(
self,
data_extractor,
segm_extractor,
inplace=True,
cmap=cv2.COLORMAP_PARULA,
alpha=0.7,
val_scale=1.0,
**kwargs,
):
self.mask_visualizer = MatrixVisualizer(
inplace=inplace, cmap=cmap, val_scale=val_scale, alpha=alpha
)
self.data_extractor = data_extractor
self.segm_extractor = segm_extractor
def context_to_image_bgr(self, context):
return context
def visualize_iuv_arr(self, context, iuv_arr: np.ndarray, bbox_xywh) -> None:
image_bgr = self.get_image_bgr_from_context(context)
matrix = self.data_extractor(iuv_arr)
segm = self.segm_extractor(iuv_arr)
mask = np.zeros(matrix.shape, dtype=np.uint8)
mask[segm > 0] = 1
image_bgr = self.mask_visualizer.visualize(image_bgr, mask, matrix, bbox_xywh)
def _extract_i_from_iuvarr(iuv_arr):
return iuv_arr[0, :, :]
def _extract_u_from_iuvarr(iuv_arr):
return iuv_arr[1, :, :]
def _extract_v_from_iuvarr(iuv_arr):
return iuv_arr[2, :, :]
def make_int_box(box: torch.Tensor) -> IntTupleBox:
int_box = [0, 0, 0, 0]
int_box[0], int_box[1], int_box[2], int_box[3] = tuple(box.long().tolist())
return int_box[0], int_box[1], int_box[2], int_box[3]
def densepose_chart_predictor_output_to_result_with_confidences(
boxes: Boxes,
coarse_segm,
fine_segm,
u, v
):
boxes_xyxy_abs = boxes.clone()
boxes_xywh_abs = BoxMode.convert(boxes_xyxy_abs, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
box_xywh = make_int_box(boxes_xywh_abs[0])
labels = resample_fine_and_coarse_segm_tensors_to_bbox(fine_segm, coarse_segm, box_xywh).squeeze(0)
uv = resample_uv_tensors_to_bbox(u, v, labels, box_xywh)
confidences = []
return box_xywh, labels, uv
def resample_fine_and_coarse_segm_tensors_to_bbox(
fine_segm: torch.Tensor, coarse_segm: torch.Tensor, box_xywh_abs: IntTupleBox
):
"""
Resample fine and coarse segmentation tensors to the given
bounding box and derive labels for each pixel of the bounding box
Args:
fine_segm: float tensor of shape [1, C, Hout, Wout]
coarse_segm: float tensor of shape [1, K, Hout, Wout]
box_xywh_abs (tuple of 4 int): bounding box given by its upper-left
corner coordinates, width (W) and height (H)
Return:
Labels for each pixel of the bounding box, a long tensor of size [1, H, W]
"""
x, y, w, h = box_xywh_abs
w = max(int(w), 1)
h = max(int(h), 1)
# coarse segmentation
coarse_segm_bbox = F.interpolate(
coarse_segm,
(h, w),
mode="bilinear",
align_corners=False,
).argmax(dim=1)
# combined coarse and fine segmentation
labels = (
F.interpolate(fine_segm, (h, w), mode="bilinear", align_corners=False).argmax(dim=1)
* (coarse_segm_bbox > 0).long()
)
return labels
def resample_uv_tensors_to_bbox(
u: torch.Tensor,
v: torch.Tensor,
labels: torch.Tensor,
box_xywh_abs: IntTupleBox,
) -> torch.Tensor:
"""
Resamples U and V coordinate estimates for the given bounding box
Args:
u (tensor [1, C, H, W] of float): U coordinates
v (tensor [1, C, H, W] of float): V coordinates
labels (tensor [H, W] of long): labels obtained by resampling segmentation
outputs for the given bounding box
box_xywh_abs (tuple of 4 int): bounding box that corresponds to predictor outputs
Return:
Resampled U and V coordinates - a tensor [2, H, W] of float
"""
x, y, w, h = box_xywh_abs
w = max(int(w), 1)
h = max(int(h), 1)
u_bbox = F.interpolate(u, (h, w), mode="bilinear", align_corners=False)
v_bbox = F.interpolate(v, (h, w), mode="bilinear", align_corners=False)
uv = torch.zeros([2, h, w], dtype=torch.float32, device=u.device)
for part_id in range(1, u_bbox.size(1)):
uv[0][labels == part_id] = u_bbox[0, part_id][labels == part_id]
uv[1][labels == part_id] = v_bbox[0, part_id][labels == part_id]
return uv

View File

@ -0,0 +1,79 @@
import os
import torch
import cv2
import numpy as np
import torch.nn.functional as F
from torchvision.transforms import Compose
from depth_anything.dpt import DPT_DINOv2
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
from .util import load_model
from .annotator_path import models_path
transform = Compose(
[
Resize(
width=518,
height=518,
resize_target=False,
keep_aspect_ratio=True,
ensure_multiple_of=14,
resize_method="lower_bound",
image_interpolation_method=cv2.INTER_CUBIC,
),
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
PrepareForNet(),
]
)
class DepthAnythingDetector:
"""https://github.com/LiheYoung/Depth-Anything"""
model_dir = os.path.join(models_path, "depth_anything")
def __init__(self, device: torch.device):
self.device = device
self.model = (
DPT_DINOv2(
encoder="vitl",
features=256,
out_channels=[256, 512, 1024, 1024],
localhub=False,
)
.to(device)
.eval()
)
remote_url = os.environ.get(
"CONTROLNET_DEPTH_ANYTHING_MODEL_URL",
"https://huggingface.co/spaces/LiheYoung/Depth-Anything/resolve/main/checkpoints/depth_anything_vitl14.pth",
)
model_path = load_model(
"depth_anything_vitl14.pth", remote_url=remote_url, model_dir=self.model_dir
)
self.model.load_state_dict(torch.load(model_path))
def __call__(self, image: np.ndarray, colored: bool = True) -> np.ndarray:
self.model.to(self.device)
h, w = image.shape[:2]
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0
image = transform({"image": image})["image"]
image = torch.from_numpy(image).unsqueeze(0).to(self.device)
@torch.no_grad()
def predict_depth(model, image):
return model(image)
depth = predict_depth(self.model, image)
depth = F.interpolate(
depth[None], (h, w), mode="bilinear", align_corners=False
)[0, 0]
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
depth = depth.cpu().numpy().astype(np.uint8)
if colored:
return cv2.applyColorMap(depth, cv2.COLORMAP_INFERNO)[:, :, ::-1]
else:
return depth
def unload_model(self):
self.model.to("cpu")

View File

@ -0,0 +1,98 @@
# This is an improved version and model of HED edge detection with Apache License, Version 2.0.
# Please use this implementation in your products
# This implementation may produce slightly different results from Saining Xie's official implementations,
# but it generates smoother edges and is more suitable for ControlNet as well as other image-to-image translations.
# Different from official models and other implementations, this is an RGB-input model (rather than BGR)
# and in this way it works better for gradio's RGB protocol
import os
import cv2
import torch
import numpy as np
from einops import rearrange
import os
from modules import devices
from annotator.annotator_path import models_path
from annotator.util import safe_step, nms
class DoubleConvBlock(torch.nn.Module):
def __init__(self, input_channel, output_channel, layer_number):
super().__init__()
self.convs = torch.nn.Sequential()
self.convs.append(torch.nn.Conv2d(in_channels=input_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1))
for i in range(1, layer_number):
self.convs.append(torch.nn.Conv2d(in_channels=output_channel, out_channels=output_channel, kernel_size=(3, 3), stride=(1, 1), padding=1))
self.projection = torch.nn.Conv2d(in_channels=output_channel, out_channels=1, kernel_size=(1, 1), stride=(1, 1), padding=0)
def __call__(self, x, down_sampling=False):
h = x
if down_sampling:
h = torch.nn.functional.max_pool2d(h, kernel_size=(2, 2), stride=(2, 2))
for conv in self.convs:
h = conv(h)
h = torch.nn.functional.relu(h)
return h, self.projection(h)
class ControlNetHED_Apache2(torch.nn.Module):
def __init__(self):
super().__init__()
self.norm = torch.nn.Parameter(torch.zeros(size=(1, 3, 1, 1)))
self.block1 = DoubleConvBlock(input_channel=3, output_channel=64, layer_number=2)
self.block2 = DoubleConvBlock(input_channel=64, output_channel=128, layer_number=2)
self.block3 = DoubleConvBlock(input_channel=128, output_channel=256, layer_number=3)
self.block4 = DoubleConvBlock(input_channel=256, output_channel=512, layer_number=3)
self.block5 = DoubleConvBlock(input_channel=512, output_channel=512, layer_number=3)
def __call__(self, x):
h = x - self.norm
h, projection1 = self.block1(h)
h, projection2 = self.block2(h, down_sampling=True)
h, projection3 = self.block3(h, down_sampling=True)
h, projection4 = self.block4(h, down_sampling=True)
h, projection5 = self.block5(h, down_sampling=True)
return projection1, projection2, projection3, projection4, projection5
netNetwork = None
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/ControlNetHED.pth"
modeldir = os.path.join(models_path, "hed")
old_modeldir = os.path.dirname(os.path.realpath(__file__))
def apply_hed(input_image, is_safe=False):
global netNetwork
if netNetwork is None:
modelpath = os.path.join(modeldir, "ControlNetHED.pth")
old_modelpath = os.path.join(old_modeldir, "ControlNetHED.pth")
if os.path.exists(old_modelpath):
modelpath = old_modelpath
elif not os.path.exists(modelpath):
from modules.modelloader import load_file_from_url
load_file_from_url(remote_model_path, model_dir=modeldir)
netNetwork = ControlNetHED_Apache2().to(devices.get_device_for("controlnet"))
netNetwork.load_state_dict(torch.load(modelpath, map_location='cpu'))
netNetwork.to(devices.get_device_for("controlnet")).float().eval()
assert input_image.ndim == 3
H, W, C = input_image.shape
with torch.no_grad():
image_hed = torch.from_numpy(input_image.copy()).float().to(devices.get_device_for("controlnet"))
image_hed = rearrange(image_hed, 'h w c -> 1 c h w')
edges = netNetwork(image_hed)
edges = [e.detach().cpu().numpy().astype(np.float32)[0, 0] for e in edges]
edges = [cv2.resize(e, (W, H), interpolation=cv2.INTER_LINEAR) for e in edges]
edges = np.stack(edges, axis=2)
edge = 1 / (1 + np.exp(-np.mean(edges, axis=2).astype(np.float64)))
if is_safe:
edge = safe_step(edge)
edge = (edge * 255.0).clip(0, 255).astype(np.uint8)
return edge
def unload_hed_model():
global netNetwork
if netNetwork is not None:
netNetwork.cpu()

View File

@ -0,0 +1,212 @@
import numpy as np
import cv2
import torch
import os
from modules import devices
from annotator.annotator_path import models_path
import mmcv
from mmdet.apis import inference_detector, init_detector
from mmpose.apis import inference_top_down_pose_model
from mmpose.apis import init_pose_model, process_mmdet_results, vis_pose_result
def preprocessing(image, device):
# Resize
scale = 640 / max(image.shape[:2])
image = cv2.resize(image, dsize=None, fx=scale, fy=scale)
raw_image = image.astype(np.uint8)
# Subtract mean values
image = image.astype(np.float32)
image -= np.array(
[
float(104.008),
float(116.669),
float(122.675),
]
)
# Convert to torch.Tensor and add "batch" axis
image = torch.from_numpy(image.transpose(2, 0, 1)).float().unsqueeze(0)
image = image.to(device)
return image, raw_image
def imshow_keypoints(img,
pose_result,
skeleton=None,
kpt_score_thr=0.1,
pose_kpt_color=None,
pose_link_color=None,
radius=4,
thickness=1):
"""Draw keypoints and links on an image.
Args:
img (ndarry): The image to draw poses on.
pose_result (list[kpts]): The poses to draw. Each element kpts is
a set of K keypoints as an Kx3 numpy.ndarray, where each
keypoint is represented as x, y, score.
kpt_score_thr (float, optional): Minimum score of keypoints
to be shown. Default: 0.3.
pose_kpt_color (np.array[Nx3]`): Color of N keypoints. If None,
the keypoint will not be drawn.
pose_link_color (np.array[Mx3]): Color of M links. If None, the
links will not be drawn.
thickness (int): Thickness of lines.
"""
img_h, img_w, _ = img.shape
img = np.zeros(img.shape)
for idx, kpts in enumerate(pose_result):
if idx > 1:
continue
kpts = kpts['keypoints']
# print(kpts)
kpts = np.array(kpts, copy=False)
# draw each point on image
if pose_kpt_color is not None:
assert len(pose_kpt_color) == len(kpts)
for kid, kpt in enumerate(kpts):
x_coord, y_coord, kpt_score = int(kpt[0]), int(kpt[1]), kpt[2]
if kpt_score < kpt_score_thr or pose_kpt_color[kid] is None:
# skip the point that should not be drawn
continue
color = tuple(int(c) for c in pose_kpt_color[kid])
cv2.circle(img, (int(x_coord), int(y_coord)),
radius, color, -1)
# draw links
if skeleton is not None and pose_link_color is not None:
assert len(pose_link_color) == len(skeleton)
for sk_id, sk in enumerate(skeleton):
pos1 = (int(kpts[sk[0], 0]), int(kpts[sk[0], 1]))
pos2 = (int(kpts[sk[1], 0]), int(kpts[sk[1], 1]))
if (pos1[0] <= 0 or pos1[0] >= img_w or pos1[1] <= 0 or pos1[1] >= img_h or pos2[0] <= 0
or pos2[0] >= img_w or pos2[1] <= 0 or pos2[1] >= img_h or kpts[sk[0], 2] < kpt_score_thr
or kpts[sk[1], 2] < kpt_score_thr or pose_link_color[sk_id] is None):
# skip the link that should not be drawn
continue
color = tuple(int(c) for c in pose_link_color[sk_id])
cv2.line(img, pos1, pos2, color, thickness=thickness)
return img
human_det, pose_model = None, None
det_model_path = "https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth"
pose_model_path = "https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth"
modeldir = os.path.join(models_path, "keypose")
old_modeldir = os.path.dirname(os.path.realpath(__file__))
det_config = 'faster_rcnn_r50_fpn_coco.py'
pose_config = 'hrnet_w48_coco_256x192.py'
det_checkpoint = 'faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth'
pose_checkpoint = 'hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth'
det_cat_id = 1
bbox_thr = 0.2
skeleton = [
[15, 13], [13, 11], [16, 14], [14, 12], [11, 12], [5, 11], [6, 12], [5, 6], [5, 7], [6, 8],
[7, 9], [8, 10],
[1, 2], [0, 1], [0, 2], [1, 3], [2, 4], [3, 5], [4, 6]
]
pose_kpt_color = [
[51, 153, 255], [51, 153, 255], [51, 153, 255], [51, 153, 255], [51, 153, 255],
[0, 255, 0],
[255, 128, 0], [0, 255, 0], [255, 128, 0], [0, 255, 0], [255, 128, 0], [0, 255, 0],
[255, 128, 0],
[0, 255, 0], [255, 128, 0], [0, 255, 0], [255, 128, 0]
]
pose_link_color = [
[0, 255, 0], [0, 255, 0], [255, 128, 0], [255, 128, 0],
[51, 153, 255], [51, 153, 255], [51, 153, 255], [51, 153, 255], [0, 255, 0],
[255, 128, 0],
[0, 255, 0], [255, 128, 0], [51, 153, 255], [51, 153, 255], [51, 153, 255],
[51, 153, 255],
[51, 153, 255], [51, 153, 255], [51, 153, 255]
]
def find_download_model(checkpoint, remote_path):
modelpath = os.path.join(modeldir, checkpoint)
old_modelpath = os.path.join(old_modeldir, checkpoint)
if os.path.exists(old_modelpath):
modelpath = old_modelpath
elif not os.path.exists(modelpath):
from modules.modelloader import load_file_from_url
load_file_from_url(remote_path, model_dir=modeldir)
return modelpath
def apply_keypose(input_image):
global human_det, pose_model
if netNetwork is None:
det_model_local = find_download_model(det_checkpoint, det_model_path)
hrnet_model_local = find_download_model(pose_checkpoint, pose_model_path)
det_config_mmcv = mmcv.Config.fromfile(det_config)
pose_config_mmcv = mmcv.Config.fromfile(pose_config)
human_det = init_detector(det_config_mmcv, det_model_local, device=devices.get_device_for("controlnet"))
pose_model = init_pose_model(pose_config_mmcv, hrnet_model_local, device=devices.get_device_for("controlnet"))
assert input_image.ndim == 3
input_image = input_image.copy()
with torch.no_grad():
image = torch.from_numpy(input_image).float().to(devices.get_device_for("controlnet"))
image = image / 255.0
mmdet_results = inference_detector(human_det, image)
# keep the person class bounding boxes.
person_results = process_mmdet_results(mmdet_results, det_cat_id)
return_heatmap = False
dataset = pose_model.cfg.data['test']['type']
# e.g. use ('backbone', ) to return backbone feature
output_layer_names = None
pose_results, _ = inference_top_down_pose_model(
pose_model,
image,
person_results,
bbox_thr=bbox_thr,
format='xyxy',
dataset=dataset,
dataset_info=None,
return_heatmap=return_heatmap,
outputs=output_layer_names
)
im_keypose_out = imshow_keypoints(
image,
pose_results,
skeleton=skeleton,
pose_kpt_color=pose_kpt_color,
pose_link_color=pose_link_color,
radius=2,
thickness=2
)
im_keypose_out = im_keypose_out.astype(np.uint8)
# image_hed = rearrange(image_hed, 'h w c -> 1 c h w')
# edge = netNetwork(image_hed)[0]
# edge = (edge.cpu().numpy() * 255.0).clip(0, 255).astype(np.uint8)
return im_keypose_out
def unload_hed_model():
global netNetwork
if netNetwork is not None:
netNetwork.cpu()

View File

@ -0,0 +1,182 @@
checkpoint_config = dict(interval=1)
# yapf:disable
log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
# dict(type='TensorboardLoggerHook')
])
# yapf:enable
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]
# optimizer
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[8, 11])
total_epochs = 12
model = dict(
type='FasterRCNN',
pretrained='torchvision://resnet50',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch'),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=5),
rpn_head=dict(
type='RPNHead',
in_channels=256,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
scales=[8],
ratios=[0.5, 1.0, 2.0],
strides=[4, 8, 16, 32, 64]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0]),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
roi_head=dict(
type='StandardRoIHead',
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
bbox_head=dict(
type='Shared2FCBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=80,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2]),
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
# model training and testing settings
train_cfg=dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=-1,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_pre=2000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False)),
test_cfg=dict(
rpn=dict(
nms_pre=1000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=dict(
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=100)
# soft-nms is also supported for rcnn testing
# e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05)
))
dataset_type = 'CocoDataset'
data_root = 'data/coco'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img']),
])
]
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(
type=dataset_type,
ann_file=f'{data_root}/annotations/instances_train2017.json',
img_prefix=f'{data_root}/train2017/',
pipeline=train_pipeline),
val=dict(
type=dataset_type,
ann_file=f'{data_root}/annotations/instances_val2017.json',
img_prefix=f'{data_root}/val2017/',
pipeline=test_pipeline),
test=dict(
type=dataset_type,
ann_file=f'{data_root}/annotations/instances_val2017.json',
img_prefix=f'{data_root}/val2017/',
pipeline=test_pipeline))
evaluation = dict(interval=1, metric='bbox')

View File

@ -0,0 +1,169 @@
# _base_ = [
# '../../../../_base_/default_runtime.py',
# '../../../../_base_/datasets/coco.py'
# ]
evaluation = dict(interval=10, metric='mAP', save_best='AP')
optimizer = dict(
type='Adam',
lr=5e-4,
)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[170, 200])
total_epochs = 210
channel_cfg = dict(
num_output_channels=17,
dataset_joints=17,
dataset_channel=[
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16],
],
inference_channel=[
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
])
# model settings
model = dict(
type='TopDown',
pretrained='https://download.openmmlab.com/mmpose/'
'pretrain_models/hrnet_w48-8ef0771d.pth',
backbone=dict(
type='HRNet',
in_channels=3,
extra=dict(
stage1=dict(
num_modules=1,
num_branches=1,
block='BOTTLENECK',
num_blocks=(4, ),
num_channels=(64, )),
stage2=dict(
num_modules=1,
num_branches=2,
block='BASIC',
num_blocks=(4, 4),
num_channels=(48, 96)),
stage3=dict(
num_modules=4,
num_branches=3,
block='BASIC',
num_blocks=(4, 4, 4),
num_channels=(48, 96, 192)),
stage4=dict(
num_modules=3,
num_branches=4,
block='BASIC',
num_blocks=(4, 4, 4, 4),
num_channels=(48, 96, 192, 384))),
),
keypoint_head=dict(
type='TopdownHeatmapSimpleHead',
in_channels=48,
out_channels=channel_cfg['num_output_channels'],
num_deconv_layers=0,
extra=dict(final_conv_kernel=1, ),
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
train_cfg=dict(),
test_cfg=dict(
flip_test=True,
post_process='default',
shift_heatmap=True,
modulate_kernel=11))
data_cfg = dict(
image_size=[192, 256],
heatmap_size=[48, 64],
num_output_channels=channel_cfg['num_output_channels'],
num_joints=channel_cfg['dataset_joints'],
dataset_channel=channel_cfg['dataset_channel'],
inference_channel=channel_cfg['inference_channel'],
soft_nms=False,
nms_thr=1.0,
oks_thr=0.9,
vis_thr=0.2,
use_gt_bbox=False,
det_bbox_thr=0.0,
bbox_file='data/coco/person_detection_results/'
'COCO_val2017_detections_AP_H_56_person.json',
)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownGetBboxCenterScale', padding=1.25),
dict(type='TopDownRandomShiftBboxCenter', shift_factor=0.16, prob=0.3),
dict(type='TopDownRandomFlip', flip_prob=0.5),
dict(
type='TopDownHalfBodyTransform',
num_joints_half_body=8,
prob_half_body=0.3),
dict(
type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(type='TopDownGenerateTarget', sigma=2),
dict(
type='Collect',
keys=['img', 'target', 'target_weight'],
meta_keys=[
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
'rotation', 'bbox_score', 'flip_pairs'
]),
]
val_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='TopDownGetBboxCenterScale', padding=1.25),
dict(type='TopDownAffine'),
dict(type='ToTensor'),
dict(
type='NormalizeTensor',
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
dict(
type='Collect',
keys=['img'],
meta_keys=[
'image_file', 'center', 'scale', 'rotation', 'bbox_score',
'flip_pairs'
]),
]
test_pipeline = val_pipeline
data_root = 'data/coco'
data = dict(
samples_per_gpu=32,
workers_per_gpu=2,
val_dataloader=dict(samples_per_gpu=32),
test_dataloader=dict(samples_per_gpu=32),
train=dict(
type='TopDownCocoDataset',
ann_file=f'{data_root}/annotations/person_keypoints_train2017.json',
img_prefix=f'{data_root}/train2017/',
data_cfg=data_cfg,
pipeline=train_pipeline,
dataset_info={{_base_.dataset_info}}),
val=dict(
type='TopDownCocoDataset',
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json',
img_prefix=f'{data_root}/val2017/',
data_cfg=data_cfg,
pipeline=val_pipeline,
dataset_info={{_base_.dataset_info}}),
test=dict(
type='TopDownCocoDataset',
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json',
img_prefix=f'{data_root}/val2017/',
data_cfg=data_cfg,
pipeline=test_pipeline,
dataset_info={{_base_.dataset_info}}),
)

View File

@ -0,0 +1,113 @@
import cv2
import numpy as np
import torch
import os
from modules import devices, shared
from annotator.annotator_path import models_path
from torchvision.transforms import transforms
# AdelaiDepth/LeReS imports
from .leres.depthmap import estimateleres, estimateboost
from .leres.multi_depth_model_woauxi import RelDepthModel
from .leres.net_tools import strip_prefix_if_present
# pix2pix/merge net imports
from .pix2pix.options.test_options import TestOptions
from .pix2pix.models.pix2pix4depth_model import Pix2Pix4DepthModel
base_model_path = os.path.join(models_path, "leres")
old_modeldir = os.path.dirname(os.path.realpath(__file__))
remote_model_path_leres = "https://huggingface.co/lllyasviel/Annotators/resolve/main/res101.pth"
remote_model_path_pix2pix = "https://huggingface.co/lllyasviel/Annotators/resolve/main/latest_net_G.pth"
model = None
pix2pixmodel = None
def unload_leres_model():
global model, pix2pixmodel
if model is not None:
model = model.cpu()
if pix2pixmodel is not None:
pix2pixmodel = pix2pixmodel.unload_network('G')
def apply_leres(input_image, thr_a, thr_b, boost=False):
global model, pix2pixmodel
if model is None:
model_path = os.path.join(base_model_path, "res101.pth")
old_model_path = os.path.join(old_modeldir, "res101.pth")
if os.path.exists(old_model_path):
model_path = old_model_path
elif not os.path.exists(model_path):
from modules.modelloader import load_file_from_url
load_file_from_url(remote_model_path_leres, model_dir=base_model_path)
if torch.cuda.is_available():
checkpoint = torch.load(model_path)
else:
checkpoint = torch.load(model_path, map_location=torch.device('cpu'))
model = RelDepthModel(backbone='resnext101')
model.load_state_dict(strip_prefix_if_present(checkpoint['depth_model'], "module."), strict=True)
del checkpoint
if boost and pix2pixmodel is None:
pix2pixmodel_path = os.path.join(base_model_path, "latest_net_G.pth")
if not os.path.exists(pix2pixmodel_path):
from modules.modelloader import load_file_from_url
load_file_from_url(remote_model_path_pix2pix, model_dir=base_model_path)
opt = TestOptions().parse()
if not torch.cuda.is_available():
opt.gpu_ids = [] # cpu mode
pix2pixmodel = Pix2Pix4DepthModel(opt)
pix2pixmodel.save_dir = base_model_path
pix2pixmodel.load_networks('latest')
pix2pixmodel.eval()
if devices.get_device_for("controlnet").type != 'mps':
model = model.to(devices.get_device_for("controlnet"))
assert input_image.ndim == 3
height, width, dim = input_image.shape
with torch.no_grad():
if boost:
depth = estimateboost(input_image, model, 0, pix2pixmodel, max(width, height))
else:
depth = estimateleres(input_image, model, width, height)
numbytes=2
depth_min = depth.min()
depth_max = depth.max()
max_val = (2**(8*numbytes))-1
# check output before normalizing and mapping to 16 bit
if depth_max - depth_min > np.finfo("float").eps:
out = max_val * (depth - depth_min) / (depth_max - depth_min)
else:
out = np.zeros(depth.shape)
# single channel, 16 bit image
depth_image = out.astype("uint16")
# convert to uint8
depth_image = cv2.convertScaleAbs(depth_image, alpha=(255.0/65535.0))
# remove near
if thr_a != 0:
thr_a = ((thr_a/100)*255)
depth_image = cv2.threshold(depth_image, thr_a, 255, cv2.THRESH_TOZERO)[1]
# invert image
depth_image = cv2.bitwise_not(depth_image)
# remove bg
if thr_b != 0:
thr_b = ((thr_b/100)*255)
depth_image = cv2.threshold(depth_image, thr_b, 255, cv2.THRESH_TOZERO)[1]
return depth_image

View File

@ -0,0 +1,23 @@
https://github.com/thygate/stable-diffusion-webui-depthmap-script
MIT License
Copyright (c) 2023 Bob Thiry
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1,199 @@
import torch.nn as nn
import torch.nn as NN
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
'resnet152']
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = NN.BatchNorm2d(planes) #NN.BatchNorm2d
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = NN.BatchNorm2d(planes) #NN.BatchNorm2d
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = NN.BatchNorm2d(planes) #NN.BatchNorm2d
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = NN.BatchNorm2d(planes) #NN.BatchNorm2d
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
self.bn3 = NN.BatchNorm2d(planes * self.expansion) #NN.BatchNorm2d
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = NN.BatchNorm2d(64) #NN.BatchNorm2d
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
#self.avgpool = nn.AvgPool2d(7, stride=1)
#self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
NN.BatchNorm2d(planes * block.expansion), #NN.BatchNorm2d
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
features = []
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
features.append(x)
x = self.layer2(x)
features.append(x)
x = self.layer3(x)
features.append(x)
x = self.layer4(x)
features.append(x)
return features
def resnet18(pretrained=True, **kwargs):
"""Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
return model
def resnet34(pretrained=True, **kwargs):
"""Constructs a ResNet-34 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
return model
def resnet50(pretrained=True, **kwargs):
"""Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
return model
def resnet101(pretrained=True, **kwargs):
"""Constructs a ResNet-101 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
return model
def resnet152(pretrained=True, **kwargs):
"""Constructs a ResNet-152 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
return model

View File

@ -0,0 +1,237 @@
#!/usr/bin/env python
# coding: utf-8
import torch.nn as nn
try:
from urllib import urlretrieve
except ImportError:
from urllib.request import urlretrieve
__all__ = ['resnext101_32x8d']
model_urls = {
'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
}
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None):
super(BasicBlock, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
# while original implementation places the stride at the first 1x1 convolution(self.conv1)
# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
# This variant is also known as ResNet V1.5 and improves accuracy according to
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None):
super(Bottleneck, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width / 64.)) * groups
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(inplanes, width)
self.bn1 = norm_layer(width)
self.conv2 = conv3x3(width, width, stride, groups, dilation)
self.bn2 = norm_layer(width)
self.conv3 = conv1x1(width, planes * self.expansion)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
groups=1, width_per_group=64, replace_stride_with_dilation=None,
norm_layer=None):
super(ResNet, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
self.inplanes = 64
self.dilation = 1
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError("replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
dilate=replace_stride_with_dilation[0])
self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
dilate=replace_stride_with_dilation[1])
self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
dilate=replace_stride_with_dilation[2])
#self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
#self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
norm_layer(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
self.base_width, previous_dilation, norm_layer))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, groups=self.groups,
base_width=self.base_width, dilation=self.dilation,
norm_layer=norm_layer))
return nn.Sequential(*layers)
def _forward_impl(self, x):
# See note [TorchScript super()]
features = []
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
features.append(x)
x = self.layer2(x)
features.append(x)
x = self.layer3(x)
features.append(x)
x = self.layer4(x)
features.append(x)
#x = self.avgpool(x)
#x = torch.flatten(x, 1)
#x = self.fc(x)
return features
def forward(self, x):
return self._forward_impl(x)
def resnext101_32x8d(pretrained=True, **kwargs):
"""Constructs a ResNet-152 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
kwargs['groups'] = 32
kwargs['width_per_group'] = 8
model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
return model

View File

@ -0,0 +1,546 @@
# Author: thygate
# https://github.com/thygate/stable-diffusion-webui-depthmap-script
from modules import devices
from modules.shared import opts
from torchvision.transforms import transforms
from operator import getitem
import torch, gc
import cv2
import numpy as np
import skimage.measure
whole_size_threshold = 1600 # R_max from the paper
pix2pixsize = 1024
def scale_torch(img):
"""
Scale the image and output it in torch.tensor.
:param img: input rgb is in shape [H, W, C], input depth/disp is in shape [H, W]
:param scale: the scale factor. float
:return: img. [C, H, W]
"""
if len(img.shape) == 2:
img = img[np.newaxis, :, :]
if img.shape[2] == 3:
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.485, 0.456, 0.406) , (0.229, 0.224, 0.225) )])
img = transform(img.astype(np.float32))
else:
img = img.astype(np.float32)
img = torch.from_numpy(img)
return img
def estimateleres(img, model, w, h):
# leres transform input
rgb_c = img[:, :, ::-1].copy()
A_resize = cv2.resize(rgb_c, (w, h))
img_torch = scale_torch(A_resize)[None, :, :, :]
# compute
with torch.no_grad():
img_torch = img_torch.to(devices.get_device_for("controlnet"))
prediction = model.depth_model(img_torch)
prediction = prediction.squeeze().cpu().numpy()
prediction = cv2.resize(prediction, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_CUBIC)
return prediction
def generatemask(size):
# Generates a Guassian mask
mask = np.zeros(size, dtype=np.float32)
sigma = int(size[0]/16)
k_size = int(2 * np.ceil(2 * int(size[0]/16)) + 1)
mask[int(0.15*size[0]):size[0] - int(0.15*size[0]), int(0.15*size[1]): size[1] - int(0.15*size[1])] = 1
mask = cv2.GaussianBlur(mask, (int(k_size), int(k_size)), sigma)
mask = (mask - mask.min()) / (mask.max() - mask.min())
mask = mask.astype(np.float32)
return mask
def resizewithpool(img, size):
i_size = img.shape[0]
n = int(np.floor(i_size/size))
out = skimage.measure.block_reduce(img, (n, n), np.max)
return out
def rgb2gray(rgb):
# Converts rgb to gray
return np.dot(rgb[..., :3], [0.2989, 0.5870, 0.1140])
def calculateprocessingres(img, basesize, confidence=0.1, scale_threshold=3, whole_size_threshold=3000):
# Returns the R_x resolution described in section 5 of the main paper.
# Parameters:
# img :input rgb image
# basesize : size the dilation kernel which is equal to receptive field of the network.
# confidence: value of x in R_x; allowed percentage of pixels that are not getting any contextual cue.
# scale_threshold: maximum allowed upscaling on the input image ; it has been set to 3.
# whole_size_threshold: maximum allowed resolution. (R_max from section 6 of the main paper)
# Returns:
# outputsize_scale*speed_scale :The computed R_x resolution
# patch_scale: K parameter from section 6 of the paper
# speed scale parameter is to process every image in a smaller size to accelerate the R_x resolution search
speed_scale = 32
image_dim = int(min(img.shape[0:2]))
gray = rgb2gray(img)
grad = np.abs(cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)) + np.abs(cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3))
grad = cv2.resize(grad, (image_dim, image_dim), cv2.INTER_AREA)
# thresholding the gradient map to generate the edge-map as a proxy of the contextual cues
m = grad.min()
M = grad.max()
middle = m + (0.4 * (M - m))
grad[grad < middle] = 0
grad[grad >= middle] = 1
# dilation kernel with size of the receptive field
kernel = np.ones((int(basesize/speed_scale), int(basesize/speed_scale)), float)
# dilation kernel with size of the a quarter of receptive field used to compute k
# as described in section 6 of main paper
kernel2 = np.ones((int(basesize / (4*speed_scale)), int(basesize / (4*speed_scale))), float)
# Output resolution limit set by the whole_size_threshold and scale_threshold.
threshold = min(whole_size_threshold, scale_threshold * max(img.shape[:2]))
outputsize_scale = basesize / speed_scale
for p_size in range(int(basesize/speed_scale), int(threshold/speed_scale), int(basesize / (2*speed_scale))):
grad_resized = resizewithpool(grad, p_size)
grad_resized = cv2.resize(grad_resized, (p_size, p_size), cv2.INTER_NEAREST)
grad_resized[grad_resized >= 0.5] = 1
grad_resized[grad_resized < 0.5] = 0
dilated = cv2.dilate(grad_resized, kernel, iterations=1)
meanvalue = (1-dilated).mean()
if meanvalue > confidence:
break
else:
outputsize_scale = p_size
grad_region = cv2.dilate(grad_resized, kernel2, iterations=1)
patch_scale = grad_region.mean()
return int(outputsize_scale*speed_scale), patch_scale
# Generate a double-input depth estimation
def doubleestimate(img, size1, size2, pix2pixsize, model, net_type, pix2pixmodel):
# Generate the low resolution estimation
estimate1 = singleestimate(img, size1, model, net_type)
# Resize to the inference size of merge network.
estimate1 = cv2.resize(estimate1, (pix2pixsize, pix2pixsize), interpolation=cv2.INTER_CUBIC)
# Generate the high resolution estimation
estimate2 = singleestimate(img, size2, model, net_type)
# Resize to the inference size of merge network.
estimate2 = cv2.resize(estimate2, (pix2pixsize, pix2pixsize), interpolation=cv2.INTER_CUBIC)
# Inference on the merge model
pix2pixmodel.set_input(estimate1, estimate2)
pix2pixmodel.test()
visuals = pix2pixmodel.get_current_visuals()
prediction_mapped = visuals['fake_B']
prediction_mapped = (prediction_mapped+1)/2
prediction_mapped = (prediction_mapped - torch.min(prediction_mapped)) / (
torch.max(prediction_mapped) - torch.min(prediction_mapped))
prediction_mapped = prediction_mapped.squeeze().cpu().numpy()
return prediction_mapped
# Generate a single-input depth estimation
def singleestimate(img, msize, model, net_type):
# if net_type == 0:
return estimateleres(img, model, msize, msize)
# else:
# return estimatemidasBoost(img, model, msize, msize)
def applyGridpatch(blsize, stride, img, box):
# Extract a simple grid patch.
counter1 = 0
patch_bound_list = {}
for k in range(blsize, img.shape[1] - blsize, stride):
for j in range(blsize, img.shape[0] - blsize, stride):
patch_bound_list[str(counter1)] = {}
patchbounds = [j - blsize, k - blsize, j - blsize + 2 * blsize, k - blsize + 2 * blsize]
patch_bound = [box[0] + patchbounds[1], box[1] + patchbounds[0], patchbounds[3] - patchbounds[1],
patchbounds[2] - patchbounds[0]]
patch_bound_list[str(counter1)]['rect'] = patch_bound
patch_bound_list[str(counter1)]['size'] = patch_bound[2]
counter1 = counter1 + 1
return patch_bound_list
# Generating local patches to perform the local refinement described in section 6 of the main paper.
def generatepatchs(img, base_size):
# Compute the gradients as a proxy of the contextual cues.
img_gray = rgb2gray(img)
whole_grad = np.abs(cv2.Sobel(img_gray, cv2.CV_64F, 0, 1, ksize=3)) +\
np.abs(cv2.Sobel(img_gray, cv2.CV_64F, 1, 0, ksize=3))
threshold = whole_grad[whole_grad > 0].mean()
whole_grad[whole_grad < threshold] = 0
# We use the integral image to speed-up the evaluation of the amount of gradients for each patch.
gf = whole_grad.sum()/len(whole_grad.reshape(-1))
grad_integral_image = cv2.integral(whole_grad)
# Variables are selected such that the initial patch size would be the receptive field size
# and the stride is set to 1/3 of the receptive field size.
blsize = int(round(base_size/2))
stride = int(round(blsize*0.75))
# Get initial Grid
patch_bound_list = applyGridpatch(blsize, stride, img, [0, 0, 0, 0])
# Refine initial Grid of patches by discarding the flat (in terms of gradients of the rgb image) ones. Refine
# each patch size to ensure that there will be enough depth cues for the network to generate a consistent depth map.
print("Selecting patches ...")
patch_bound_list = adaptiveselection(grad_integral_image, patch_bound_list, gf)
# Sort the patch list to make sure the merging operation will be done with the correct order: starting from biggest
# patch
patchset = sorted(patch_bound_list.items(), key=lambda x: getitem(x[1], 'size'), reverse=True)
return patchset
def getGF_fromintegral(integralimage, rect):
# Computes the gradient density of a given patch from the gradient integral image.
x1 = rect[1]
x2 = rect[1]+rect[3]
y1 = rect[0]
y2 = rect[0]+rect[2]
value = integralimage[x2, y2]-integralimage[x1, y2]-integralimage[x2, y1]+integralimage[x1, y1]
return value
# Adaptively select patches
def adaptiveselection(integral_grad, patch_bound_list, gf):
patchlist = {}
count = 0
height, width = integral_grad.shape
search_step = int(32/factor)
# Go through all patches
for c in range(len(patch_bound_list)):
# Get patch
bbox = patch_bound_list[str(c)]['rect']
# Compute the amount of gradients present in the patch from the integral image.
cgf = getGF_fromintegral(integral_grad, bbox)/(bbox[2]*bbox[3])
# Check if patching is beneficial by comparing the gradient density of the patch to
# the gradient density of the whole image
if cgf >= gf:
bbox_test = bbox.copy()
patchlist[str(count)] = {}
# Enlarge each patch until the gradient density of the patch is equal
# to the whole image gradient density
while True:
bbox_test[0] = bbox_test[0] - int(search_step/2)
bbox_test[1] = bbox_test[1] - int(search_step/2)
bbox_test[2] = bbox_test[2] + search_step
bbox_test[3] = bbox_test[3] + search_step
# Check if we are still within the image
if bbox_test[0] < 0 or bbox_test[1] < 0 or bbox_test[1] + bbox_test[3] >= height \
or bbox_test[0] + bbox_test[2] >= width:
break
# Compare gradient density
cgf = getGF_fromintegral(integral_grad, bbox_test)/(bbox_test[2]*bbox_test[3])
if cgf < gf:
break
bbox = bbox_test.copy()
# Add patch to selected patches
patchlist[str(count)]['rect'] = bbox
patchlist[str(count)]['size'] = bbox[2]
count = count + 1
# Return selected patches
return patchlist
def impatch(image, rect):
# Extract the given patch pixels from a given image.
w1 = rect[0]
h1 = rect[1]
w2 = w1 + rect[2]
h2 = h1 + rect[3]
image_patch = image[h1:h2, w1:w2]
return image_patch
class ImageandPatchs:
def __init__(self, root_dir, name, patchsinfo, rgb_image, scale=1):
self.root_dir = root_dir
self.patchsinfo = patchsinfo
self.name = name
self.patchs = patchsinfo
self.scale = scale
self.rgb_image = cv2.resize(rgb_image, (round(rgb_image.shape[1]*scale), round(rgb_image.shape[0]*scale)),
interpolation=cv2.INTER_CUBIC)
self.do_have_estimate = False
self.estimation_updated_image = None
self.estimation_base_image = None
def __len__(self):
return len(self.patchs)
def set_base_estimate(self, est):
self.estimation_base_image = est
if self.estimation_updated_image is not None:
self.do_have_estimate = True
def set_updated_estimate(self, est):
self.estimation_updated_image = est
if self.estimation_base_image is not None:
self.do_have_estimate = True
def __getitem__(self, index):
patch_id = int(self.patchs[index][0])
rect = np.array(self.patchs[index][1]['rect'])
msize = self.patchs[index][1]['size']
## applying scale to rect:
rect = np.round(rect * self.scale)
rect = rect.astype('int')
msize = round(msize * self.scale)
patch_rgb = impatch(self.rgb_image, rect)
if self.do_have_estimate:
patch_whole_estimate_base = impatch(self.estimation_base_image, rect)
patch_whole_estimate_updated = impatch(self.estimation_updated_image, rect)
return {'patch_rgb': patch_rgb, 'patch_whole_estimate_base': patch_whole_estimate_base,
'patch_whole_estimate_updated': patch_whole_estimate_updated, 'rect': rect,
'size': msize, 'id': patch_id}
else:
return {'patch_rgb': patch_rgb, 'rect': rect, 'size': msize, 'id': patch_id}
def print_options(self, opt):
"""Print and save options
It will print both current options and default values(if different).
It will save options into a text file / [checkpoints_dir] / opt.txt
"""
message = ''
message += '----------------- Options ---------------\n'
for k, v in sorted(vars(opt).items()):
comment = ''
default = self.parser.get_default(k)
if v != default:
comment = '\t[default: %s]' % str(default)
message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment)
message += '----------------- End -------------------'
print(message)
# save to the disk
"""
expr_dir = os.path.join(opt.checkpoints_dir, opt.name)
util.mkdirs(expr_dir)
file_name = os.path.join(expr_dir, '{}_opt.txt'.format(opt.phase))
with open(file_name, 'wt') as opt_file:
opt_file.write(message)
opt_file.write('\n')
"""
def parse(self):
"""Parse our options, create checkpoints directory suffix, and set up gpu device."""
opt = self.gather_options()
opt.isTrain = self.isTrain # train or test
# process opt.suffix
if opt.suffix:
suffix = ('_' + opt.suffix.format(**vars(opt))) if opt.suffix != '' else ''
opt.name = opt.name + suffix
#self.print_options(opt)
# set gpu ids
str_ids = opt.gpu_ids.split(',')
opt.gpu_ids = []
for str_id in str_ids:
id = int(str_id)
if id >= 0:
opt.gpu_ids.append(id)
#if len(opt.gpu_ids) > 0:
# torch.cuda.set_device(opt.gpu_ids[0])
self.opt = opt
return self.opt
def estimateboost(img, model, model_type, pix2pixmodel, max_res=512):
global whole_size_threshold
# get settings
if hasattr(opts, 'depthmap_script_boost_rmax'):
whole_size_threshold = opts.depthmap_script_boost_rmax
if model_type == 0: #leres
net_receptive_field_size = 448
patch_netsize = 2 * net_receptive_field_size
elif model_type == 1: #dpt_beit_large_512
net_receptive_field_size = 512
patch_netsize = 2 * net_receptive_field_size
else: #other midas
net_receptive_field_size = 384
patch_netsize = 2 * net_receptive_field_size
gc.collect()
devices.torch_gc()
# Generate mask used to smoothly blend the local pathc estimations to the base estimate.
# It is arbitrarily large to avoid artifacts during rescaling for each crop.
mask_org = generatemask((3000, 3000))
mask = mask_org.copy()
# Value x of R_x defined in the section 5 of the main paper.
r_threshold_value = 0.2
#if R0:
# r_threshold_value = 0
input_resolution = img.shape
scale_threshold = 3 # Allows up-scaling with a scale up to 3
# Find the best input resolution R-x. The resolution search described in section 5-double estimation of the main paper and section B of the
# supplementary material.
whole_image_optimal_size, patch_scale = calculateprocessingres(img, net_receptive_field_size, r_threshold_value, scale_threshold, whole_size_threshold)
# print('wholeImage being processed in :', whole_image_optimal_size)
# Generate the base estimate using the double estimation.
whole_estimate = doubleestimate(img, net_receptive_field_size, whole_image_optimal_size, pix2pixsize, model, model_type, pix2pixmodel)
# Compute the multiplier described in section 6 of the main paper to make sure our initial patch can select
# small high-density regions of the image.
global factor
factor = max(min(1, 4 * patch_scale * whole_image_optimal_size / whole_size_threshold), 0.2)
# print('Adjust factor is:', 1/factor)
# Check if Local boosting is beneficial.
if max_res < whole_image_optimal_size:
# print("No Local boosting. Specified Max Res is smaller than R20, Returning doubleestimate result")
return cv2.resize(whole_estimate, (input_resolution[1], input_resolution[0]), interpolation=cv2.INTER_CUBIC)
# Compute the default target resolution.
if img.shape[0] > img.shape[1]:
a = 2 * whole_image_optimal_size
b = round(2 * whole_image_optimal_size * img.shape[1] / img.shape[0])
else:
a = round(2 * whole_image_optimal_size * img.shape[0] / img.shape[1])
b = 2 * whole_image_optimal_size
b = int(round(b / factor))
a = int(round(a / factor))
"""
# recompute a, b and saturate to max res.
if max(a,b) > max_res:
print('Default Res is higher than max-res: Reducing final resolution')
if img.shape[0] > img.shape[1]:
a = max_res
b = round(max_res * img.shape[1] / img.shape[0])
else:
a = round(max_res * img.shape[0] / img.shape[1])
b = max_res
b = int(b)
a = int(a)
"""
img = cv2.resize(img, (b, a), interpolation=cv2.INTER_CUBIC)
# Extract selected patches for local refinement
base_size = net_receptive_field_size * 2
patchset = generatepatchs(img, base_size)
# print('Target resolution: ', img.shape)
# Computing a scale in case user prompted to generate the results as the same resolution of the input.
# Notice that our method output resolution is independent of the input resolution and this parameter will only
# enable a scaling operation during the local patch merge implementation to generate results with the same resolution
# as the input.
"""
if output_resolution == 1:
mergein_scale = input_resolution[0] / img.shape[0]
print('Dynamicly change merged-in resolution; scale:', mergein_scale)
else:
mergein_scale = 1
"""
# always rescale to input res for now
mergein_scale = input_resolution[0] / img.shape[0]
imageandpatchs = ImageandPatchs('', '', patchset, img, mergein_scale)
whole_estimate_resized = cv2.resize(whole_estimate, (round(img.shape[1]*mergein_scale),
round(img.shape[0]*mergein_scale)), interpolation=cv2.INTER_CUBIC)
imageandpatchs.set_base_estimate(whole_estimate_resized.copy())
imageandpatchs.set_updated_estimate(whole_estimate_resized.copy())
print('Resulting depthmap resolution will be :', whole_estimate_resized.shape[:2])
print('Patches to process: '+str(len(imageandpatchs)))
# Enumerate through all patches, generate their estimations and refining the base estimate.
for patch_ind in range(len(imageandpatchs)):
# Get patch information
patch = imageandpatchs[patch_ind] # patch object
patch_rgb = patch['patch_rgb'] # rgb patch
patch_whole_estimate_base = patch['patch_whole_estimate_base'] # corresponding patch from base
rect = patch['rect'] # patch size and location
patch_id = patch['id'] # patch ID
org_size = patch_whole_estimate_base.shape # the original size from the unscaled input
print('\t Processing patch', patch_ind, '/', len(imageandpatchs)-1, '|', rect)
# We apply double estimation for patches. The high resolution value is fixed to twice the receptive
# field size of the network for patches to accelerate the process.
patch_estimation = doubleestimate(patch_rgb, net_receptive_field_size, patch_netsize, pix2pixsize, model, model_type, pix2pixmodel)
patch_estimation = cv2.resize(patch_estimation, (pix2pixsize, pix2pixsize), interpolation=cv2.INTER_CUBIC)
patch_whole_estimate_base = cv2.resize(patch_whole_estimate_base, (pix2pixsize, pix2pixsize), interpolation=cv2.INTER_CUBIC)
# Merging the patch estimation into the base estimate using our merge network:
# We feed the patch estimation and the same region from the updated base estimate to the merge network
# to generate the target estimate for the corresponding region.
pix2pixmodel.set_input(patch_whole_estimate_base, patch_estimation)
# Run merging network
pix2pixmodel.test()
visuals = pix2pixmodel.get_current_visuals()
prediction_mapped = visuals['fake_B']
prediction_mapped = (prediction_mapped+1)/2
prediction_mapped = prediction_mapped.squeeze().cpu().numpy()
mapped = prediction_mapped
# We use a simple linear polynomial to make sure the result of the merge network would match the values of
# base estimate
p_coef = np.polyfit(mapped.reshape(-1), patch_whole_estimate_base.reshape(-1), deg=1)
merged = np.polyval(p_coef, mapped.reshape(-1)).reshape(mapped.shape)
merged = cv2.resize(merged, (org_size[1],org_size[0]), interpolation=cv2.INTER_CUBIC)
# Get patch size and location
w1 = rect[0]
h1 = rect[1]
w2 = w1 + rect[2]
h2 = h1 + rect[3]
# To speed up the implementation, we only generate the Gaussian mask once with a sufficiently large size
# and resize it to our needed size while merging the patches.
if mask.shape != org_size:
mask = cv2.resize(mask_org, (org_size[1],org_size[0]), interpolation=cv2.INTER_LINEAR)
tobemergedto = imageandpatchs.estimation_updated_image
# Update the whole estimation:
# We use a simple Gaussian mask to blend the merged patch region with the base estimate to ensure seamless
# blending at the boundaries of the patch region.
tobemergedto[h1:h2, w1:w2] = np.multiply(tobemergedto[h1:h2, w1:w2], 1 - mask) + np.multiply(merged, mask)
imageandpatchs.set_updated_estimate(tobemergedto)
# output
return cv2.resize(imageandpatchs.estimation_updated_image, (input_resolution[1], input_resolution[0]), interpolation=cv2.INTER_CUBIC)

View File

@ -0,0 +1,34 @@
from . import network_auxi as network
from .net_tools import get_func
import torch
import torch.nn as nn
from modules import devices
class RelDepthModel(nn.Module):
def __init__(self, backbone='resnet50'):
super(RelDepthModel, self).__init__()
if backbone == 'resnet50':
encoder = 'resnet50_stride32'
elif backbone == 'resnext101':
encoder = 'resnext101_stride32x8d'
self.depth_model = DepthModel(encoder)
def inference(self, rgb):
with torch.no_grad():
input = rgb.to(self.depth_model.device)
depth = self.depth_model(input)
#pred_depth_out = depth - depth.min() + 0.01
return depth #pred_depth_out
class DepthModel(nn.Module):
def __init__(self, encoder):
super(DepthModel, self).__init__()
backbone = network.__name__.split('.')[-1] + '.' + encoder
self.encoder_modules = get_func(backbone)()
self.decoder_modules = network.Decoder()
def forward(self, x):
lateral_out = self.encoder_modules(x)
out_logit = self.decoder_modules(lateral_out)
return out_logit

View File

@ -0,0 +1,54 @@
import importlib
import torch
import os
from collections import OrderedDict
def get_func(func_name):
"""Helper to return a function object by name. func_name must identify a
function in this module or the path to a function relative to the base
'modeling' module.
"""
if func_name == '':
return None
try:
parts = func_name.split('.')
# Refers to a function in this module
if len(parts) == 1:
return globals()[parts[0]]
# Otherwise, assume we're referencing a module under modeling
module_name = 'annotator.leres.leres.' + '.'.join(parts[:-1])
module = importlib.import_module(module_name)
return getattr(module, parts[-1])
except Exception:
print('Failed to f1ind function: %s', func_name)
raise
def load_ckpt(args, depth_model, shift_model, focal_model):
"""
Load checkpoint.
"""
if os.path.isfile(args.load_ckpt):
print("loading checkpoint %s" % args.load_ckpt)
checkpoint = torch.load(args.load_ckpt)
if shift_model is not None:
shift_model.load_state_dict(strip_prefix_if_present(checkpoint['shift_model'], 'module.'),
strict=True)
if focal_model is not None:
focal_model.load_state_dict(strip_prefix_if_present(checkpoint['focal_model'], 'module.'),
strict=True)
depth_model.load_state_dict(strip_prefix_if_present(checkpoint['depth_model'], "module."),
strict=True)
del checkpoint
if torch.cuda.is_available():
torch.cuda.empty_cache()
def strip_prefix_if_present(state_dict, prefix):
keys = sorted(state_dict.keys())
if not all(key.startswith(prefix) for key in keys):
return state_dict
stripped_state_dict = OrderedDict()
for key, value in state_dict.items():
stripped_state_dict[key.replace(prefix, "")] = value
return stripped_state_dict

View File

@ -0,0 +1,417 @@
import torch
import torch.nn as nn
import torch.nn.init as init
from . import Resnet, Resnext_torch
def resnet50_stride32():
return DepthNet(backbone='resnet', depth=50, upfactors=[2, 2, 2, 2])
def resnext101_stride32x8d():
return DepthNet(backbone='resnext101_32x8d', depth=101, upfactors=[2, 2, 2, 2])
class Decoder(nn.Module):
def __init__(self):
super(Decoder, self).__init__()
self.inchannels = [256, 512, 1024, 2048]
self.midchannels = [256, 256, 256, 512]
self.upfactors = [2,2,2,2]
self.outchannels = 1
self.conv = FTB(inchannels=self.inchannels[3], midchannels=self.midchannels[3])
self.conv1 = nn.Conv2d(in_channels=self.midchannels[3], out_channels=self.midchannels[2], kernel_size=3, padding=1, stride=1, bias=True)
self.upsample = nn.Upsample(scale_factor=self.upfactors[3], mode='bilinear', align_corners=True)
self.ffm2 = FFM(inchannels=self.inchannels[2], midchannels=self.midchannels[2], outchannels = self.midchannels[2], upfactor=self.upfactors[2])
self.ffm1 = FFM(inchannels=self.inchannels[1], midchannels=self.midchannels[1], outchannels = self.midchannels[1], upfactor=self.upfactors[1])
self.ffm0 = FFM(inchannels=self.inchannels[0], midchannels=self.midchannels[0], outchannels = self.midchannels[0], upfactor=self.upfactors[0])
self.outconv = AO(inchannels=self.midchannels[0], outchannels=self.outchannels, upfactor=2)
self._init_params()
def _init_params(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.normal_(m.weight, std=0.01)
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.ConvTranspose2d):
init.normal_(m.weight, std=0.01)
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d): #NN.BatchNorm2d
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.01)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, features):
x_32x = self.conv(features[3]) # 1/32
x_32 = self.conv1(x_32x)
x_16 = self.upsample(x_32) # 1/16
x_8 = self.ffm2(features[2], x_16) # 1/8
x_4 = self.ffm1(features[1], x_8) # 1/4
x_2 = self.ffm0(features[0], x_4) # 1/2
#-----------------------------------------
x = self.outconv(x_2) # original size
return x
class DepthNet(nn.Module):
__factory = {
18: Resnet.resnet18,
34: Resnet.resnet34,
50: Resnet.resnet50,
101: Resnet.resnet101,
152: Resnet.resnet152
}
def __init__(self,
backbone='resnet',
depth=50,
upfactors=[2, 2, 2, 2]):
super(DepthNet, self).__init__()
self.backbone = backbone
self.depth = depth
self.pretrained = False
self.inchannels = [256, 512, 1024, 2048]
self.midchannels = [256, 256, 256, 512]
self.upfactors = upfactors
self.outchannels = 1
# Build model
if self.backbone == 'resnet':
if self.depth not in DepthNet.__factory:
raise KeyError("Unsupported depth:", self.depth)
self.encoder = DepthNet.__factory[depth](pretrained=self.pretrained)
elif self.backbone == 'resnext101_32x8d':
self.encoder = Resnext_torch.resnext101_32x8d(pretrained=self.pretrained)
else:
self.encoder = Resnext_torch.resnext101(pretrained=self.pretrained)
def forward(self, x):
x = self.encoder(x) # 1/32, 1/16, 1/8, 1/4
return x
class FTB(nn.Module):
def __init__(self, inchannels, midchannels=512):
super(FTB, self).__init__()
self.in1 = inchannels
self.mid = midchannels
self.conv1 = nn.Conv2d(in_channels=self.in1, out_channels=self.mid, kernel_size=3, padding=1, stride=1,
bias=True)
# NN.BatchNorm2d
self.conv_branch = nn.Sequential(nn.ReLU(inplace=True), \
nn.Conv2d(in_channels=self.mid, out_channels=self.mid, kernel_size=3,
padding=1, stride=1, bias=True), \
nn.BatchNorm2d(num_features=self.mid), \
nn.ReLU(inplace=True), \
nn.Conv2d(in_channels=self.mid, out_channels=self.mid, kernel_size=3,
padding=1, stride=1, bias=True))
self.relu = nn.ReLU(inplace=True)
self.init_params()
def forward(self, x):
x = self.conv1(x)
x = x + self.conv_branch(x)
x = self.relu(x)
return x
def init_params(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.normal_(m.weight, std=0.01)
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.ConvTranspose2d):
# init.kaiming_normal_(m.weight, mode='fan_out')
init.normal_(m.weight, std=0.01)
# init.xavier_normal_(m.weight)
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d): # NN.BatchNorm2d
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.01)
if m.bias is not None:
init.constant_(m.bias, 0)
class ATA(nn.Module):
def __init__(self, inchannels, reduction=8):
super(ATA, self).__init__()
self.inchannels = inchannels
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(nn.Linear(self.inchannels * 2, self.inchannels // reduction),
nn.ReLU(inplace=True),
nn.Linear(self.inchannels // reduction, self.inchannels),
nn.Sigmoid())
self.init_params()
def forward(self, low_x, high_x):
n, c, _, _ = low_x.size()
x = torch.cat([low_x, high_x], 1)
x = self.avg_pool(x)
x = x.view(n, -1)
x = self.fc(x).view(n, c, 1, 1)
x = low_x * x + high_x
return x
def init_params(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
# init.kaiming_normal_(m.weight, mode='fan_out')
# init.normal(m.weight, std=0.01)
init.xavier_normal_(m.weight)
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.ConvTranspose2d):
# init.kaiming_normal_(m.weight, mode='fan_out')
# init.normal_(m.weight, std=0.01)
init.xavier_normal_(m.weight)
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d): # NN.BatchNorm2d
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.01)
if m.bias is not None:
init.constant_(m.bias, 0)
class FFM(nn.Module):
def __init__(self, inchannels, midchannels, outchannels, upfactor=2):
super(FFM, self).__init__()
self.inchannels = inchannels
self.midchannels = midchannels
self.outchannels = outchannels
self.upfactor = upfactor
self.ftb1 = FTB(inchannels=self.inchannels, midchannels=self.midchannels)
# self.ata = ATA(inchannels = self.midchannels)
self.ftb2 = FTB(inchannels=self.midchannels, midchannels=self.outchannels)
self.upsample = nn.Upsample(scale_factor=self.upfactor, mode='bilinear', align_corners=True)
self.init_params()
def forward(self, low_x, high_x):
x = self.ftb1(low_x)
x = x + high_x
x = self.ftb2(x)
x = self.upsample(x)
return x
def init_params(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
# init.kaiming_normal_(m.weight, mode='fan_out')
init.normal_(m.weight, std=0.01)
# init.xavier_normal_(m.weight)
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.ConvTranspose2d):
# init.kaiming_normal_(m.weight, mode='fan_out')
init.normal_(m.weight, std=0.01)
# init.xavier_normal_(m.weight)
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d): # NN.Batchnorm2d
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.01)
if m.bias is not None:
init.constant_(m.bias, 0)
class AO(nn.Module):
# Adaptive output module
def __init__(self, inchannels, outchannels, upfactor=2):
super(AO, self).__init__()
self.inchannels = inchannels
self.outchannels = outchannels
self.upfactor = upfactor
self.adapt_conv = nn.Sequential(
nn.Conv2d(in_channels=self.inchannels, out_channels=self.inchannels // 2, kernel_size=3, padding=1,
stride=1, bias=True), \
nn.BatchNorm2d(num_features=self.inchannels // 2), \
nn.ReLU(inplace=True), \
nn.Conv2d(in_channels=self.inchannels // 2, out_channels=self.outchannels, kernel_size=3, padding=1,
stride=1, bias=True), \
nn.Upsample(scale_factor=self.upfactor, mode='bilinear', align_corners=True))
self.init_params()
def forward(self, x):
x = self.adapt_conv(x)
return x
def init_params(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
# init.kaiming_normal_(m.weight, mode='fan_out')
init.normal_(m.weight, std=0.01)
# init.xavier_normal_(m.weight)
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.ConvTranspose2d):
# init.kaiming_normal_(m.weight, mode='fan_out')
init.normal_(m.weight, std=0.01)
# init.xavier_normal_(m.weight)
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d): # NN.Batchnorm2d
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.01)
if m.bias is not None:
init.constant_(m.bias, 0)
# ==============================================================================================================
class ResidualConv(nn.Module):
def __init__(self, inchannels):
super(ResidualConv, self).__init__()
# NN.BatchNorm2d
self.conv = nn.Sequential(
# nn.BatchNorm2d(num_features=inchannels),
nn.ReLU(inplace=False),
# nn.Conv2d(in_channels=inchannels, out_channels=inchannels, kernel_size=3, padding=1, stride=1, groups=inchannels,bias=True),
# nn.Conv2d(in_channels=inchannels, out_channels=inchannels, kernel_size=1, padding=0, stride=1, groups=1,bias=True)
nn.Conv2d(in_channels=inchannels, out_channels=inchannels / 2, kernel_size=3, padding=1, stride=1,
bias=False),
nn.BatchNorm2d(num_features=inchannels / 2),
nn.ReLU(inplace=False),
nn.Conv2d(in_channels=inchannels / 2, out_channels=inchannels, kernel_size=3, padding=1, stride=1,
bias=False)
)
self.init_params()
def forward(self, x):
x = self.conv(x) + x
return x
def init_params(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
# init.kaiming_normal_(m.weight, mode='fan_out')
init.normal_(m.weight, std=0.01)
# init.xavier_normal_(m.weight)
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.ConvTranspose2d):
# init.kaiming_normal_(m.weight, mode='fan_out')
init.normal_(m.weight, std=0.01)
# init.xavier_normal_(m.weight)
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d): # NN.BatchNorm2d
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.01)
if m.bias is not None:
init.constant_(m.bias, 0)
class FeatureFusion(nn.Module):
def __init__(self, inchannels, outchannels):
super(FeatureFusion, self).__init__()
self.conv = ResidualConv(inchannels=inchannels)
# NN.BatchNorm2d
self.up = nn.Sequential(ResidualConv(inchannels=inchannels),
nn.ConvTranspose2d(in_channels=inchannels, out_channels=outchannels, kernel_size=3,
stride=2, padding=1, output_padding=1),
nn.BatchNorm2d(num_features=outchannels),
nn.ReLU(inplace=True))
def forward(self, lowfeat, highfeat):
return self.up(highfeat + self.conv(lowfeat))
def init_params(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
# init.kaiming_normal_(m.weight, mode='fan_out')
init.normal_(m.weight, std=0.01)
# init.xavier_normal_(m.weight)
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.ConvTranspose2d):
# init.kaiming_normal_(m.weight, mode='fan_out')
init.normal_(m.weight, std=0.01)
# init.xavier_normal_(m.weight)
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d): # NN.BatchNorm2d
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.01)
if m.bias is not None:
init.constant_(m.bias, 0)
class SenceUnderstand(nn.Module):
def __init__(self, channels):
super(SenceUnderstand, self).__init__()
self.channels = channels
self.conv1 = nn.Sequential(nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, padding=1),
nn.ReLU(inplace=True))
self.pool = nn.AdaptiveAvgPool2d(8)
self.fc = nn.Sequential(nn.Linear(512 * 8 * 8, self.channels),
nn.ReLU(inplace=True))
self.conv2 = nn.Sequential(
nn.Conv2d(in_channels=self.channels, out_channels=self.channels, kernel_size=1, padding=0),
nn.ReLU(inplace=True))
self.initial_params()
def forward(self, x):
n, c, h, w = x.size()
x = self.conv1(x)
x = self.pool(x)
x = x.view(n, -1)
x = self.fc(x)
x = x.view(n, self.channels, 1, 1)
x = self.conv2(x)
x = x.repeat(1, 1, h, w)
return x
def initial_params(self, dev=0.01):
for m in self.modules():
if isinstance(m, nn.Conv2d):
# print torch.sum(m.weight)
m.weight.data.normal_(0, dev)
if m.bias is not None:
m.bias.data.fill_(0)
elif isinstance(m, nn.ConvTranspose2d):
# print torch.sum(m.weight)
m.weight.data.normal_(0, dev)
if m.bias is not None:
m.bias.data.fill_(0)
elif isinstance(m, nn.Linear):
m.weight.data.normal_(0, dev)
if __name__ == '__main__':
net = DepthNet(depth=50, pretrained=True)
print(net)
inputs = torch.ones(4,3,128,128)
out = net(inputs)
print(out.size())

View File

@ -0,0 +1,19 @@
https://github.com/compphoto/BoostingMonocularDepth
Copyright 2021, Seyed Mahdi Hosseini Miangoleh, Sebastian Dille, Computational Photography Laboratory. All rights reserved.
This software is for academic use only. A redistribution of this
software, with or without modifications, has to be for academic
use only, while giving the appropriate credit to the original
authors of the software. The methods implemented as a part of
this software may be covered under patents or patent applications.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ''AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@ -0,0 +1,67 @@
"""This package contains modules related to objective functions, optimizations, and network architectures.
To add a custom model class called 'dummy', you need to add a file called 'dummy_model.py' and define a subclass DummyModel inherited from BaseModel.
You need to implement the following five functions:
-- <__init__>: initialize the class; first call BaseModel.__init__(self, opt).
-- <set_input>: unpack data from dataset and apply preprocessing.
-- <forward>: produce intermediate results.
-- <optimize_parameters>: calculate loss, gradients, and update network weights.
-- <modify_commandline_options>: (optionally) add model-specific options and set default options.
In the function <__init__>, you need to define four lists:
-- self.loss_names (str list): specify the training losses that you want to plot and save.
-- self.model_names (str list): define networks used in our training.
-- self.visual_names (str list): specify the images that you want to display and save.
-- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an usage.
Now you can use the model class by specifying flag '--model dummy'.
See our template model class 'template_model.py' for more details.
"""
import importlib
from .base_model import BaseModel
def find_model_using_name(model_name):
"""Import the module "models/[model_name]_model.py".
In the file, the class called DatasetNameModel() will
be instantiated. It has to be a subclass of BaseModel,
and it is case-insensitive.
"""
model_filename = "annotator.leres.pix2pix.models." + model_name + "_model"
modellib = importlib.import_module(model_filename)
model = None
target_model_name = model_name.replace('_', '') + 'model'
for name, cls in modellib.__dict__.items():
if name.lower() == target_model_name.lower() \
and issubclass(cls, BaseModel):
model = cls
if model is None:
print("In %s.py, there should be a subclass of BaseModel with class name that matches %s in lowercase." % (model_filename, target_model_name))
exit(0)
return model
def get_option_setter(model_name):
"""Return the static method <modify_commandline_options> of the model class."""
model_class = find_model_using_name(model_name)
return model_class.modify_commandline_options
def create_model(opt):
"""Create a model given the option.
This function warps the class CustomDatasetDataLoader.
This is the main interface between this package and 'train.py'/'test.py'
Example:
>>> from models import create_model
>>> model = create_model(opt)
"""
model = find_model_using_name(opt.model)
instance = model(opt)
print("model [%s] was created" % type(instance).__name__)
return instance

View File

@ -0,0 +1,241 @@
import os
import torch, gc
from modules import devices
from collections import OrderedDict
from abc import ABC, abstractmethod
from . import networks
class BaseModel(ABC):
"""This class is an abstract base class (ABC) for models.
To create a subclass, you need to implement the following five functions:
-- <__init__>: initialize the class; first call BaseModel.__init__(self, opt).
-- <set_input>: unpack data from dataset and apply preprocessing.
-- <forward>: produce intermediate results.
-- <optimize_parameters>: calculate losses, gradients, and update network weights.
-- <modify_commandline_options>: (optionally) add model-specific options and set default options.
"""
def __init__(self, opt):
"""Initialize the BaseModel class.
Parameters:
opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
When creating your custom class, you need to implement your own initialization.
In this function, you should first call <BaseModel.__init__(self, opt)>
Then, you need to define four lists:
-- self.loss_names (str list): specify the training losses that you want to plot and save.
-- self.model_names (str list): define networks used in our training.
-- self.visual_names (str list): specify the images that you want to display and save.
-- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an example.
"""
self.opt = opt
self.gpu_ids = opt.gpu_ids
self.isTrain = opt.isTrain
self.device = torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu') # get device name: CPU or GPU
self.save_dir = os.path.join(opt.checkpoints_dir, opt.name) # save all the checkpoints to save_dir
if opt.preprocess != 'scale_width': # with [scale_width], input images might have different sizes, which hurts the performance of cudnn.benchmark.
torch.backends.cudnn.benchmark = True
self.loss_names = []
self.model_names = []
self.visual_names = []
self.optimizers = []
self.image_paths = []
self.metric = 0 # used for learning rate policy 'plateau'
@staticmethod
def modify_commandline_options(parser, is_train):
"""Add new model-specific options, and rewrite default values for existing options.
Parameters:
parser -- original option parser
is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
Returns:
the modified parser.
"""
return parser
@abstractmethod
def set_input(self, input):
"""Unpack input data from the dataloader and perform necessary pre-processing steps.
Parameters:
input (dict): includes the data itself and its metadata information.
"""
pass
@abstractmethod
def forward(self):
"""Run forward pass; called by both functions <optimize_parameters> and <test>."""
pass
@abstractmethod
def optimize_parameters(self):
"""Calculate losses, gradients, and update network weights; called in every training iteration"""
pass
def setup(self, opt):
"""Load and print networks; create schedulers
Parameters:
opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions
"""
if self.isTrain:
self.schedulers = [networks.get_scheduler(optimizer, opt) for optimizer in self.optimizers]
if not self.isTrain or opt.continue_train:
load_suffix = 'iter_%d' % opt.load_iter if opt.load_iter > 0 else opt.epoch
self.load_networks(load_suffix)
self.print_networks(opt.verbose)
def eval(self):
"""Make models eval mode during test time"""
for name in self.model_names:
if isinstance(name, str):
net = getattr(self, 'net' + name)
net.eval()
def test(self):
"""Forward function used in test time.
This function wraps <forward> function in no_grad() so we don't save intermediate steps for backprop
It also calls <compute_visuals> to produce additional visualization results
"""
with torch.no_grad():
self.forward()
self.compute_visuals()
def compute_visuals(self):
"""Calculate additional output images for visdom and HTML visualization"""
pass
def get_image_paths(self):
""" Return image paths that are used to load current data"""
return self.image_paths
def update_learning_rate(self):
"""Update learning rates for all the networks; called at the end of every epoch"""
old_lr = self.optimizers[0].param_groups[0]['lr']
for scheduler in self.schedulers:
if self.opt.lr_policy == 'plateau':
scheduler.step(self.metric)
else:
scheduler.step()
lr = self.optimizers[0].param_groups[0]['lr']
print('learning rate %.7f -> %.7f' % (old_lr, lr))
def get_current_visuals(self):
"""Return visualization images. train.py will display these images with visdom, and save the images to a HTML"""
visual_ret = OrderedDict()
for name in self.visual_names:
if isinstance(name, str):
visual_ret[name] = getattr(self, name)
return visual_ret
def get_current_losses(self):
"""Return traning losses / errors. train.py will print out these errors on console, and save them to a file"""
errors_ret = OrderedDict()
for name in self.loss_names:
if isinstance(name, str):
errors_ret[name] = float(getattr(self, 'loss_' + name)) # float(...) works for both scalar tensor and float number
return errors_ret
def save_networks(self, epoch):
"""Save all the networks to the disk.
Parameters:
epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name)
"""
for name in self.model_names:
if isinstance(name, str):
save_filename = '%s_net_%s.pth' % (epoch, name)
save_path = os.path.join(self.save_dir, save_filename)
net = getattr(self, 'net' + name)
if len(self.gpu_ids) > 0 and torch.cuda.is_available():
torch.save(net.module.cpu().state_dict(), save_path)
net.cuda(self.gpu_ids[0])
else:
torch.save(net.cpu().state_dict(), save_path)
def unload_network(self, name):
"""Unload network and gc.
"""
if isinstance(name, str):
net = getattr(self, 'net' + name)
del net
gc.collect()
devices.torch_gc()
return None
def __patch_instance_norm_state_dict(self, state_dict, module, keys, i=0):
"""Fix InstanceNorm checkpoints incompatibility (prior to 0.4)"""
key = keys[i]
if i + 1 == len(keys): # at the end, pointing to a parameter/buffer
if module.__class__.__name__.startswith('InstanceNorm') and \
(key == 'running_mean' or key == 'running_var'):
if getattr(module, key) is None:
state_dict.pop('.'.join(keys))
if module.__class__.__name__.startswith('InstanceNorm') and \
(key == 'num_batches_tracked'):
state_dict.pop('.'.join(keys))
else:
self.__patch_instance_norm_state_dict(state_dict, getattr(module, key), keys, i + 1)
def load_networks(self, epoch):
"""Load all the networks from the disk.
Parameters:
epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name)
"""
for name in self.model_names:
if isinstance(name, str):
load_filename = '%s_net_%s.pth' % (epoch, name)
load_path = os.path.join(self.save_dir, load_filename)
net = getattr(self, 'net' + name)
if isinstance(net, torch.nn.DataParallel):
net = net.module
# print('Loading depth boost model from %s' % load_path)
# if you are using PyTorch newer than 0.4 (e.g., built from
# GitHub source), you can remove str() on self.device
state_dict = torch.load(load_path, map_location=str(self.device))
if hasattr(state_dict, '_metadata'):
del state_dict._metadata
# patch InstanceNorm checkpoints prior to 0.4
for key in list(state_dict.keys()): # need to copy keys here because we mutate in loop
self.__patch_instance_norm_state_dict(state_dict, net, key.split('.'))
net.load_state_dict(state_dict)
def print_networks(self, verbose):
"""Print the total number of parameters in the network and (if verbose) network architecture
Parameters:
verbose (bool) -- if verbose: print the network architecture
"""
print('---------- Networks initialized -------------')
for name in self.model_names:
if isinstance(name, str):
net = getattr(self, 'net' + name)
num_params = 0
for param in net.parameters():
num_params += param.numel()
if verbose:
print(net)
print('[Network %s] Total number of parameters : %.3f M' % (name, num_params / 1e6))
print('-----------------------------------------------')
def set_requires_grad(self, nets, requires_grad=False):
"""Set requies_grad=Fasle for all the networks to avoid unnecessary computations
Parameters:
nets (network list) -- a list of networks
requires_grad (bool) -- whether the networks require gradients or not
"""
if not isinstance(nets, list):
nets = [nets]
for net in nets:
if net is not None:
for param in net.parameters():
param.requires_grad = requires_grad

View File

@ -0,0 +1,58 @@
import os
import torch
class BaseModelHG():
def name(self):
return 'BaseModel'
def initialize(self, opt):
self.opt = opt
self.gpu_ids = opt.gpu_ids
self.isTrain = opt.isTrain
self.Tensor = torch.cuda.FloatTensor if self.gpu_ids else torch.Tensor
self.save_dir = os.path.join(opt.checkpoints_dir, opt.name)
def set_input(self, input):
self.input = input
def forward(self):
pass
# used in test time, no backprop
def test(self):
pass
def get_image_paths(self):
pass
def optimize_parameters(self):
pass
def get_current_visuals(self):
return self.input
def get_current_errors(self):
return {}
def save(self, label):
pass
# helper saving function that can be used by subclasses
def save_network(self, network, network_label, epoch_label, gpu_ids):
save_filename = '_%s_net_%s.pth' % (epoch_label, network_label)
save_path = os.path.join(self.save_dir, save_filename)
torch.save(network.cpu().state_dict(), save_path)
if len(gpu_ids) and torch.cuda.is_available():
network.cuda(device_id=gpu_ids[0])
# helper loading function that can be used by subclasses
def load_network(self, network, network_label, epoch_label):
save_filename = '%s_net_%s.pth' % (epoch_label, network_label)
save_path = os.path.join(self.save_dir, save_filename)
print(save_path)
model = torch.load(save_path)
return model
# network.load_state_dict(torch.load(save_path))
def update_learning_rate():
pass

View File

@ -0,0 +1,623 @@
import torch
import torch.nn as nn
from torch.nn import init
import functools
from torch.optim import lr_scheduler
###############################################################################
# Helper Functions
###############################################################################
class Identity(nn.Module):
def forward(self, x):
return x
def get_norm_layer(norm_type='instance'):
"""Return a normalization layer
Parameters:
norm_type (str) -- the name of the normalization layer: batch | instance | none
For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev).
For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics.
"""
if norm_type == 'batch':
norm_layer = functools.partial(nn.BatchNorm2d, affine=True, track_running_stats=True)
elif norm_type == 'instance':
norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False)
elif norm_type == 'none':
def norm_layer(x): return Identity()
else:
raise NotImplementedError('normalization layer [%s] is not found' % norm_type)
return norm_layer
def get_scheduler(optimizer, opt):
"""Return a learning rate scheduler
Parameters:
optimizer -- the optimizer of the network
opt (option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions 
opt.lr_policy is the name of learning rate policy: linear | step | plateau | cosine
For 'linear', we keep the same learning rate for the first <opt.n_epochs> epochs
and linearly decay the rate to zero over the next <opt.n_epochs_decay> epochs.
For other schedulers (step, plateau, and cosine), we use the default PyTorch schedulers.
See https://pytorch.org/docs/stable/optim.html for more details.
"""
if opt.lr_policy == 'linear':
def lambda_rule(epoch):
lr_l = 1.0 - max(0, epoch + opt.epoch_count - opt.n_epochs) / float(opt.n_epochs_decay + 1)
return lr_l
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule)
elif opt.lr_policy == 'step':
scheduler = lr_scheduler.StepLR(optimizer, step_size=opt.lr_decay_iters, gamma=0.1)
elif opt.lr_policy == 'plateau':
scheduler = lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.2, threshold=0.01, patience=5)
elif opt.lr_policy == 'cosine':
scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=opt.n_epochs, eta_min=0)
else:
return NotImplementedError('learning rate policy [%s] is not implemented', opt.lr_policy)
return scheduler
def init_weights(net, init_type='normal', init_gain=0.02):
"""Initialize network weights.
Parameters:
net (network) -- network to be initialized
init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
init_gain (float) -- scaling factor for normal, xavier and orthogonal.
We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might
work better for some applications. Feel free to try yourself.
"""
def init_func(m): # define the initialization function
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
if init_type == 'normal':
init.normal_(m.weight.data, 0.0, init_gain)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=init_gain)
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=init_gain)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif classname.find('BatchNorm2d') != -1: # BatchNorm Layer's weight is not a matrix; only normal distribution applies.
init.normal_(m.weight.data, 1.0, init_gain)
init.constant_(m.bias.data, 0.0)
# print('initialize network with %s' % init_type)
net.apply(init_func) # apply the initialization function <init_func>
def init_net(net, init_type='normal', init_gain=0.02, gpu_ids=[]):
"""Initialize a network: 1. register CPU/GPU device (with multi-GPU support); 2. initialize the network weights
Parameters:
net (network) -- the network to be initialized
init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
gain (float) -- scaling factor for normal, xavier and orthogonal.
gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2
Return an initialized network.
"""
if len(gpu_ids) > 0:
assert(torch.cuda.is_available())
net.to(gpu_ids[0])
net = torch.nn.DataParallel(net, gpu_ids) # multi-GPUs
init_weights(net, init_type, init_gain=init_gain)
return net
def define_G(input_nc, output_nc, ngf, netG, norm='batch', use_dropout=False, init_type='normal', init_gain=0.02, gpu_ids=[]):
"""Create a generator
Parameters:
input_nc (int) -- the number of channels in input images
output_nc (int) -- the number of channels in output images
ngf (int) -- the number of filters in the last conv layer
netG (str) -- the architecture's name: resnet_9blocks | resnet_6blocks | unet_256 | unet_128
norm (str) -- the name of normalization layers used in the network: batch | instance | none
use_dropout (bool) -- if use dropout layers.
init_type (str) -- the name of our initialization method.
init_gain (float) -- scaling factor for normal, xavier and orthogonal.
gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2
Returns a generator
Our current implementation provides two types of generators:
U-Net: [unet_128] (for 128x128 input images) and [unet_256] (for 256x256 input images)
The original U-Net paper: https://arxiv.org/abs/1505.04597
Resnet-based generator: [resnet_6blocks] (with 6 Resnet blocks) and [resnet_9blocks] (with 9 Resnet blocks)
Resnet-based generator consists of several Resnet blocks between a few downsampling/upsampling operations.
We adapt Torch code from Justin Johnson's neural style transfer project (https://github.com/jcjohnson/fast-neural-style).
The generator has been initialized by <init_net>. It uses RELU for non-linearity.
"""
net = None
norm_layer = get_norm_layer(norm_type=norm)
if netG == 'resnet_9blocks':
net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=9)
elif netG == 'resnet_6blocks':
net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=6)
elif netG == 'resnet_12blocks':
net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=12)
elif netG == 'unet_128':
net = UnetGenerator(input_nc, output_nc, 7, ngf, norm_layer=norm_layer, use_dropout=use_dropout)
elif netG == 'unet_256':
net = UnetGenerator(input_nc, output_nc, 8, ngf, norm_layer=norm_layer, use_dropout=use_dropout)
elif netG == 'unet_672':
net = UnetGenerator(input_nc, output_nc, 5, ngf, norm_layer=norm_layer, use_dropout=use_dropout)
elif netG == 'unet_960':
net = UnetGenerator(input_nc, output_nc, 6, ngf, norm_layer=norm_layer, use_dropout=use_dropout)
elif netG == 'unet_1024':
net = UnetGenerator(input_nc, output_nc, 10, ngf, norm_layer=norm_layer, use_dropout=use_dropout)
else:
raise NotImplementedError('Generator model name [%s] is not recognized' % netG)
return init_net(net, init_type, init_gain, gpu_ids)
def define_D(input_nc, ndf, netD, n_layers_D=3, norm='batch', init_type='normal', init_gain=0.02, gpu_ids=[]):
"""Create a discriminator
Parameters:
input_nc (int) -- the number of channels in input images
ndf (int) -- the number of filters in the first conv layer
netD (str) -- the architecture's name: basic | n_layers | pixel
n_layers_D (int) -- the number of conv layers in the discriminator; effective when netD=='n_layers'
norm (str) -- the type of normalization layers used in the network.
init_type (str) -- the name of the initialization method.
init_gain (float) -- scaling factor for normal, xavier and orthogonal.
gpu_ids (int list) -- which GPUs the network runs on: e.g., 0,1,2
Returns a discriminator
Our current implementation provides three types of discriminators:
[basic]: 'PatchGAN' classifier described in the original pix2pix paper.
It can classify whether 70×70 overlapping patches are real or fake.
Such a patch-level discriminator architecture has fewer parameters
than a full-image discriminator and can work on arbitrarily-sized images
in a fully convolutional fashion.
[n_layers]: With this mode, you can specify the number of conv layers in the discriminator
with the parameter <n_layers_D> (default=3 as used in [basic] (PatchGAN).)
[pixel]: 1x1 PixelGAN discriminator can classify whether a pixel is real or not.
It encourages greater color diversity but has no effect on spatial statistics.
The discriminator has been initialized by <init_net>. It uses Leakly RELU for non-linearity.
"""
net = None
norm_layer = get_norm_layer(norm_type=norm)
if netD == 'basic': # default PatchGAN classifier
net = NLayerDiscriminator(input_nc, ndf, n_layers=3, norm_layer=norm_layer)
elif netD == 'n_layers': # more options
net = NLayerDiscriminator(input_nc, ndf, n_layers_D, norm_layer=norm_layer)
elif netD == 'pixel': # classify if each pixel is real or fake
net = PixelDiscriminator(input_nc, ndf, norm_layer=norm_layer)
else:
raise NotImplementedError('Discriminator model name [%s] is not recognized' % netD)
return init_net(net, init_type, init_gain, gpu_ids)
##############################################################################
# Classes
##############################################################################
class GANLoss(nn.Module):
"""Define different GAN objectives.
The GANLoss class abstracts away the need to create the target label tensor
that has the same size as the input.
"""
def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0):
""" Initialize the GANLoss class.
Parameters:
gan_mode (str) - - the type of GAN objective. It currently supports vanilla, lsgan, and wgangp.
target_real_label (bool) - - label for a real image
target_fake_label (bool) - - label of a fake image
Note: Do not use sigmoid as the last layer of Discriminator.
LSGAN needs no sigmoid. vanilla GANs will handle it with BCEWithLogitsLoss.
"""
super(GANLoss, self).__init__()
self.register_buffer('real_label', torch.tensor(target_real_label))
self.register_buffer('fake_label', torch.tensor(target_fake_label))
self.gan_mode = gan_mode
if gan_mode == 'lsgan':
self.loss = nn.MSELoss()
elif gan_mode == 'vanilla':
self.loss = nn.BCEWithLogitsLoss()
elif gan_mode in ['wgangp']:
self.loss = None
else:
raise NotImplementedError('gan mode %s not implemented' % gan_mode)
def get_target_tensor(self, prediction, target_is_real):
"""Create label tensors with the same size as the input.
Parameters:
prediction (tensor) - - tpyically the prediction from a discriminator
target_is_real (bool) - - if the ground truth label is for real images or fake images
Returns:
A label tensor filled with ground truth label, and with the size of the input
"""
if target_is_real:
target_tensor = self.real_label
else:
target_tensor = self.fake_label
return target_tensor.expand_as(prediction)
def __call__(self, prediction, target_is_real):
"""Calculate loss given Discriminator's output and grount truth labels.
Parameters:
prediction (tensor) - - tpyically the prediction output from a discriminator
target_is_real (bool) - - if the ground truth label is for real images or fake images
Returns:
the calculated loss.
"""
if self.gan_mode in ['lsgan', 'vanilla']:
target_tensor = self.get_target_tensor(prediction, target_is_real)
loss = self.loss(prediction, target_tensor)
elif self.gan_mode == 'wgangp':
if target_is_real:
loss = -prediction.mean()
else:
loss = prediction.mean()
return loss
def cal_gradient_penalty(netD, real_data, fake_data, device, type='mixed', constant=1.0, lambda_gp=10.0):
"""Calculate the gradient penalty loss, used in WGAN-GP paper https://arxiv.org/abs/1704.00028
Arguments:
netD (network) -- discriminator network
real_data (tensor array) -- real images
fake_data (tensor array) -- generated images from the generator
device (str) -- GPU / CPU: from torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu')
type (str) -- if we mix real and fake data or not [real | fake | mixed].
constant (float) -- the constant used in formula ( ||gradient||_2 - constant)^2
lambda_gp (float) -- weight for this loss
Returns the gradient penalty loss
"""
if lambda_gp > 0.0:
if type == 'real': # either use real images, fake images, or a linear interpolation of two.
interpolatesv = real_data
elif type == 'fake':
interpolatesv = fake_data
elif type == 'mixed':
alpha = torch.rand(real_data.shape[0], 1, device=device)
alpha = alpha.expand(real_data.shape[0], real_data.nelement() // real_data.shape[0]).contiguous().view(*real_data.shape)
interpolatesv = alpha * real_data + ((1 - alpha) * fake_data)
else:
raise NotImplementedError('{} not implemented'.format(type))
interpolatesv.requires_grad_(True)
disc_interpolates = netD(interpolatesv)
gradients = torch.autograd.grad(outputs=disc_interpolates, inputs=interpolatesv,
grad_outputs=torch.ones(disc_interpolates.size()).to(device),
create_graph=True, retain_graph=True, only_inputs=True)
gradients = gradients[0].view(real_data.size(0), -1) # flat the data
gradient_penalty = (((gradients + 1e-16).norm(2, dim=1) - constant) ** 2).mean() * lambda_gp # added eps
return gradient_penalty, gradients
else:
return 0.0, None
class ResnetGenerator(nn.Module):
"""Resnet-based generator that consists of Resnet blocks between a few downsampling/upsampling operations.
We adapt Torch code and idea from Justin Johnson's neural style transfer project(https://github.com/jcjohnson/fast-neural-style)
"""
def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, padding_type='reflect'):
"""Construct a Resnet-based generator
Parameters:
input_nc (int) -- the number of channels in input images
output_nc (int) -- the number of channels in output images
ngf (int) -- the number of filters in the last conv layer
norm_layer -- normalization layer
use_dropout (bool) -- if use dropout layers
n_blocks (int) -- the number of ResNet blocks
padding_type (str) -- the name of padding layer in conv layers: reflect | replicate | zero
"""
assert(n_blocks >= 0)
super(ResnetGenerator, self).__init__()
if type(norm_layer) == functools.partial:
use_bias = norm_layer.func == nn.InstanceNorm2d
else:
use_bias = norm_layer == nn.InstanceNorm2d
model = [nn.ReflectionPad2d(3),
nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0, bias=use_bias),
norm_layer(ngf),
nn.ReLU(True)]
n_downsampling = 2
for i in range(n_downsampling): # add downsampling layers
mult = 2 ** i
model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1, bias=use_bias),
norm_layer(ngf * mult * 2),
nn.ReLU(True)]
mult = 2 ** n_downsampling
for i in range(n_blocks): # add ResNet blocks
model += [ResnetBlock(ngf * mult, padding_type=padding_type, norm_layer=norm_layer, use_dropout=use_dropout, use_bias=use_bias)]
for i in range(n_downsampling): # add upsampling layers
mult = 2 ** (n_downsampling - i)
model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2),
kernel_size=3, stride=2,
padding=1, output_padding=1,
bias=use_bias),
norm_layer(int(ngf * mult / 2)),
nn.ReLU(True)]
model += [nn.ReflectionPad2d(3)]
model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)]
model += [nn.Tanh()]
self.model = nn.Sequential(*model)
def forward(self, input):
"""Standard forward"""
return self.model(input)
class ResnetBlock(nn.Module):
"""Define a Resnet block"""
def __init__(self, dim, padding_type, norm_layer, use_dropout, use_bias):
"""Initialize the Resnet block
A resnet block is a conv block with skip connections
We construct a conv block with build_conv_block function,
and implement skip connections in <forward> function.
Original Resnet paper: https://arxiv.org/pdf/1512.03385.pdf
"""
super(ResnetBlock, self).__init__()
self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout, use_bias)
def build_conv_block(self, dim, padding_type, norm_layer, use_dropout, use_bias):
"""Construct a convolutional block.
Parameters:
dim (int) -- the number of channels in the conv layer.
padding_type (str) -- the name of padding layer: reflect | replicate | zero
norm_layer -- normalization layer
use_dropout (bool) -- if use dropout layers.
use_bias (bool) -- if the conv layer uses bias or not
Returns a conv block (with a conv layer, a normalization layer, and a non-linearity layer (ReLU))
"""
conv_block = []
p = 0
if padding_type == 'reflect':
conv_block += [nn.ReflectionPad2d(1)]
elif padding_type == 'replicate':
conv_block += [nn.ReplicationPad2d(1)]
elif padding_type == 'zero':
p = 1
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim), nn.ReLU(True)]
if use_dropout:
conv_block += [nn.Dropout(0.5)]
p = 0
if padding_type == 'reflect':
conv_block += [nn.ReflectionPad2d(1)]
elif padding_type == 'replicate':
conv_block += [nn.ReplicationPad2d(1)]
elif padding_type == 'zero':
p = 1
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim)]
return nn.Sequential(*conv_block)
def forward(self, x):
"""Forward function (with skip connections)"""
out = x + self.conv_block(x) # add skip connections
return out
class UnetGenerator(nn.Module):
"""Create a Unet-based generator"""
def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False):
"""Construct a Unet generator
Parameters:
input_nc (int) -- the number of channels in input images
output_nc (int) -- the number of channels in output images
num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7,
image of size 128x128 will become of size 1x1 # at the bottleneck
ngf (int) -- the number of filters in the last conv layer
norm_layer -- normalization layer
We construct the U-Net from the innermost layer to the outermost layer.
It is a recursive process.
"""
super(UnetGenerator, self).__init__()
# construct unet structure
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True) # add the innermost layer
for i in range(num_downs - 5): # add intermediate layers with ngf * 8 filters
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout)
# gradually reduce the number of filters from ngf * 8 to ngf
unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
self.model = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) # add the outermost layer
def forward(self, input):
"""Standard forward"""
return self.model(input)
class UnetSkipConnectionBlock(nn.Module):
"""Defines the Unet submodule with skip connection.
X -------------------identity----------------------
|-- downsampling -- |submodule| -- upsampling --|
"""
def __init__(self, outer_nc, inner_nc, input_nc=None,
submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False):
"""Construct a Unet submodule with skip connections.
Parameters:
outer_nc (int) -- the number of filters in the outer conv layer
inner_nc (int) -- the number of filters in the inner conv layer
input_nc (int) -- the number of channels in input images/features
submodule (UnetSkipConnectionBlock) -- previously defined submodules
outermost (bool) -- if this module is the outermost module
innermost (bool) -- if this module is the innermost module
norm_layer -- normalization layer
use_dropout (bool) -- if use dropout layers.
"""
super(UnetSkipConnectionBlock, self).__init__()
self.outermost = outermost
if type(norm_layer) == functools.partial:
use_bias = norm_layer.func == nn.InstanceNorm2d
else:
use_bias = norm_layer == nn.InstanceNorm2d
if input_nc is None:
input_nc = outer_nc
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4,
stride=2, padding=1, bias=use_bias)
downrelu = nn.LeakyReLU(0.2, True)
downnorm = norm_layer(inner_nc)
uprelu = nn.ReLU(True)
upnorm = norm_layer(outer_nc)
if outermost:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
kernel_size=4, stride=2,
padding=1)
down = [downconv]
up = [uprelu, upconv, nn.Tanh()]
model = down + [submodule] + up
elif innermost:
upconv = nn.ConvTranspose2d(inner_nc, outer_nc,
kernel_size=4, stride=2,
padding=1, bias=use_bias)
down = [downrelu, downconv]
up = [uprelu, upconv, upnorm]
model = down + up
else:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
kernel_size=4, stride=2,
padding=1, bias=use_bias)
down = [downrelu, downconv, downnorm]
up = [uprelu, upconv, upnorm]
if use_dropout:
model = down + [submodule] + up + [nn.Dropout(0.5)]
else:
model = down + [submodule] + up
self.model = nn.Sequential(*model)
def forward(self, x):
if self.outermost:
return self.model(x)
else: # add skip connections
return torch.cat([x, self.model(x)], 1)
class NLayerDiscriminator(nn.Module):
"""Defines a PatchGAN discriminator"""
def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d):
"""Construct a PatchGAN discriminator
Parameters:
input_nc (int) -- the number of channels in input images
ndf (int) -- the number of filters in the last conv layer
n_layers (int) -- the number of conv layers in the discriminator
norm_layer -- normalization layer
"""
super(NLayerDiscriminator, self).__init__()
if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters
use_bias = norm_layer.func == nn.InstanceNorm2d
else:
use_bias = norm_layer == nn.InstanceNorm2d
kw = 4
padw = 1
sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]
nf_mult = 1
nf_mult_prev = 1
for n in range(1, n_layers): # gradually increase the number of filters
nf_mult_prev = nf_mult
nf_mult = min(2 ** n, 8)
sequence += [
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias),
norm_layer(ndf * nf_mult),
nn.LeakyReLU(0.2, True)
]
nf_mult_prev = nf_mult
nf_mult = min(2 ** n_layers, 8)
sequence += [
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias),
norm_layer(ndf * nf_mult),
nn.LeakyReLU(0.2, True)
]
sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map
self.model = nn.Sequential(*sequence)
def forward(self, input):
"""Standard forward."""
return self.model(input)
class PixelDiscriminator(nn.Module):
"""Defines a 1x1 PatchGAN discriminator (pixelGAN)"""
def __init__(self, input_nc, ndf=64, norm_layer=nn.BatchNorm2d):
"""Construct a 1x1 PatchGAN discriminator
Parameters:
input_nc (int) -- the number of channels in input images
ndf (int) -- the number of filters in the last conv layer
norm_layer -- normalization layer
"""
super(PixelDiscriminator, self).__init__()
if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters
use_bias = norm_layer.func == nn.InstanceNorm2d
else:
use_bias = norm_layer == nn.InstanceNorm2d
self.net = [
nn.Conv2d(input_nc, ndf, kernel_size=1, stride=1, padding=0),
nn.LeakyReLU(0.2, True),
nn.Conv2d(ndf, ndf * 2, kernel_size=1, stride=1, padding=0, bias=use_bias),
norm_layer(ndf * 2),
nn.LeakyReLU(0.2, True),
nn.Conv2d(ndf * 2, 1, kernel_size=1, stride=1, padding=0, bias=use_bias)]
self.net = nn.Sequential(*self.net)
def forward(self, input):
"""Standard forward."""
return self.net(input)

View File

@ -0,0 +1,155 @@
import torch
from .base_model import BaseModel
from . import networks
class Pix2Pix4DepthModel(BaseModel):
""" This class implements the pix2pix model, for learning a mapping from input images to output images given paired data.
The model training requires '--dataset_mode aligned' dataset.
By default, it uses a '--netG unet256' U-Net generator,
a '--netD basic' discriminator (PatchGAN),
and a '--gan_mode' vanilla GAN loss (the cross-entropy objective used in the orignal GAN paper).
pix2pix paper: https://arxiv.org/pdf/1611.07004.pdf
"""
@staticmethod
def modify_commandline_options(parser, is_train=True):
"""Add new dataset-specific options, and rewrite default values for existing options.
Parameters:
parser -- original option parser
is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
Returns:
the modified parser.
For pix2pix, we do not use image buffer
The training objective is: GAN Loss + lambda_L1 * ||G(A)-B||_1
By default, we use vanilla GAN loss, UNet with batchnorm, and aligned datasets.
"""
# changing the default values to match the pix2pix paper (https://phillipi.github.io/pix2pix/)
parser.set_defaults(input_nc=2,output_nc=1,norm='none', netG='unet_1024', dataset_mode='depthmerge')
if is_train:
parser.set_defaults(pool_size=0, gan_mode='vanilla',)
parser.add_argument('--lambda_L1', type=float, default=1000, help='weight for L1 loss')
return parser
def __init__(self, opt):
"""Initialize the pix2pix class.
Parameters:
opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
"""
BaseModel.__init__(self, opt)
# specify the training losses you want to print out. The training/test scripts will call <BaseModel.get_current_losses>
self.loss_names = ['G_GAN', 'G_L1', 'D_real', 'D_fake']
# self.loss_names = ['G_L1']
# specify the images you want to save/display. The training/test scripts will call <BaseModel.get_current_visuals>
if self.isTrain:
self.visual_names = ['outer','inner', 'fake_B', 'real_B']
else:
self.visual_names = ['fake_B']
# specify the models you want to save to the disk. The training/test scripts will call <BaseModel.save_networks> and <BaseModel.load_networks>
if self.isTrain:
self.model_names = ['G','D']
else: # during test time, only load G
self.model_names = ['G']
# define networks (both generator and discriminator)
self.netG = networks.define_G(opt.input_nc, opt.output_nc, 64, 'unet_1024', 'none',
False, 'normal', 0.02, self.gpu_ids)
if self.isTrain: # define a discriminator; conditional GANs need to take both input and output images; Therefore, #channels for D is input_nc + output_nc
self.netD = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf, opt.netD,
opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids)
if self.isTrain:
# define loss functions
self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device)
self.criterionL1 = torch.nn.L1Loss()
# initialize optimizers; schedulers will be automatically created by function <BaseModel.setup>.
self.optimizer_G = torch.optim.Adam(self.netG.parameters(), lr=1e-4, betas=(opt.beta1, 0.999))
self.optimizer_D = torch.optim.Adam(self.netD.parameters(), lr=2e-06, betas=(opt.beta1, 0.999))
self.optimizers.append(self.optimizer_G)
self.optimizers.append(self.optimizer_D)
def set_input_train(self, input):
self.outer = input['data_outer'].to(self.device)
self.outer = torch.nn.functional.interpolate(self.outer,(1024,1024),mode='bilinear',align_corners=False)
self.inner = input['data_inner'].to(self.device)
self.inner = torch.nn.functional.interpolate(self.inner,(1024,1024),mode='bilinear',align_corners=False)
self.image_paths = input['image_path']
if self.isTrain:
self.gtfake = input['data_gtfake'].to(self.device)
self.gtfake = torch.nn.functional.interpolate(self.gtfake, (1024, 1024), mode='bilinear', align_corners=False)
self.real_B = self.gtfake
self.real_A = torch.cat((self.outer, self.inner), 1)
def set_input(self, outer, inner):
inner = torch.from_numpy(inner).unsqueeze(0).unsqueeze(0)
outer = torch.from_numpy(outer).unsqueeze(0).unsqueeze(0)
inner = (inner - torch.min(inner))/(torch.max(inner)-torch.min(inner))
outer = (outer - torch.min(outer))/(torch.max(outer)-torch.min(outer))
inner = self.normalize(inner)
outer = self.normalize(outer)
self.real_A = torch.cat((outer, inner), 1).to(self.device)
def normalize(self, input):
input = input * 2
input = input - 1
return input
def forward(self):
"""Run forward pass; called by both functions <optimize_parameters> and <test>."""
self.fake_B = self.netG(self.real_A) # G(A)
def backward_D(self):
"""Calculate GAN loss for the discriminator"""
# Fake; stop backprop to the generator by detaching fake_B
fake_AB = torch.cat((self.real_A, self.fake_B), 1) # we use conditional GANs; we need to feed both input and output to the discriminator
pred_fake = self.netD(fake_AB.detach())
self.loss_D_fake = self.criterionGAN(pred_fake, False)
# Real
real_AB = torch.cat((self.real_A, self.real_B), 1)
pred_real = self.netD(real_AB)
self.loss_D_real = self.criterionGAN(pred_real, True)
# combine loss and calculate gradients
self.loss_D = (self.loss_D_fake + self.loss_D_real) * 0.5
self.loss_D.backward()
def backward_G(self):
"""Calculate GAN and L1 loss for the generator"""
# First, G(A) should fake the discriminator
fake_AB = torch.cat((self.real_A, self.fake_B), 1)
pred_fake = self.netD(fake_AB)
self.loss_G_GAN = self.criterionGAN(pred_fake, True)
# Second, G(A) = B
self.loss_G_L1 = self.criterionL1(self.fake_B, self.real_B) * self.opt.lambda_L1
# combine loss and calculate gradients
self.loss_G = self.loss_G_L1 + self.loss_G_GAN
self.loss_G.backward()
def optimize_parameters(self):
self.forward() # compute fake images: G(A)
# update D
self.set_requires_grad(self.netD, True) # enable backprop for D
self.optimizer_D.zero_grad() # set D's gradients to zero
self.backward_D() # calculate gradients for D
self.optimizer_D.step() # update D's weights
# update G
self.set_requires_grad(self.netD, False) # D requires no gradients when optimizing G
self.optimizer_G.zero_grad() # set G's gradients to zero
self.backward_G() # calculate graidents for G
self.optimizer_G.step() # udpate G's weights

View File

@ -0,0 +1 @@
"""This package options includes option modules: training options, test options, and basic options (used in both training and test)."""

View File

@ -0,0 +1,156 @@
import argparse
import os
from ...pix2pix.util import util
# import torch
from ...pix2pix import models
# import pix2pix.data
import numpy as np
class BaseOptions():
"""This class defines options used during both training and test time.
It also implements several helper functions such as parsing, printing, and saving the options.
It also gathers additional options defined in <modify_commandline_options> functions in both dataset class and model class.
"""
def __init__(self):
"""Reset the class; indicates the class hasn't been initailized"""
self.initialized = False
def initialize(self, parser):
"""Define the common options that are used in both training and test."""
# basic parameters
parser.add_argument('--dataroot', help='path to images (should have subfolders trainA, trainB, valA, valB, etc)')
parser.add_argument('--name', type=str, default='void', help='mahdi_unet_new, scaled_unet')
parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU')
parser.add_argument('--checkpoints_dir', type=str, default='./pix2pix/checkpoints', help='models are saved here')
# model parameters
parser.add_argument('--model', type=str, default='cycle_gan', help='chooses which model to use. [cycle_gan | pix2pix | test | colorization]')
parser.add_argument('--input_nc', type=int, default=2, help='# of input image channels: 3 for RGB and 1 for grayscale')
parser.add_argument('--output_nc', type=int, default=1, help='# of output image channels: 3 for RGB and 1 for grayscale')
parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in the last conv layer')
parser.add_argument('--ndf', type=int, default=64, help='# of discrim filters in the first conv layer')
parser.add_argument('--netD', type=str, default='basic', help='specify discriminator architecture [basic | n_layers | pixel]. The basic model is a 70x70 PatchGAN. n_layers allows you to specify the layers in the discriminator')
parser.add_argument('--netG', type=str, default='resnet_9blocks', help='specify generator architecture [resnet_9blocks | resnet_6blocks | unet_256 | unet_128]')
parser.add_argument('--n_layers_D', type=int, default=3, help='only used if netD==n_layers')
parser.add_argument('--norm', type=str, default='instance', help='instance normalization or batch normalization [instance | batch | none]')
parser.add_argument('--init_type', type=str, default='normal', help='network initialization [normal | xavier | kaiming | orthogonal]')
parser.add_argument('--init_gain', type=float, default=0.02, help='scaling factor for normal, xavier and orthogonal.')
parser.add_argument('--no_dropout', action='store_true', help='no dropout for the generator')
# dataset parameters
parser.add_argument('--dataset_mode', type=str, default='unaligned', help='chooses how datasets are loaded. [unaligned | aligned | single | colorization]')
parser.add_argument('--direction', type=str, default='AtoB', help='AtoB or BtoA')
parser.add_argument('--serial_batches', action='store_true', help='if true, takes images in order to make batches, otherwise takes them randomly')
parser.add_argument('--num_threads', default=4, type=int, help='# threads for loading data')
parser.add_argument('--batch_size', type=int, default=1, help='input batch size')
parser.add_argument('--load_size', type=int, default=672, help='scale images to this size')
parser.add_argument('--crop_size', type=int, default=672, help='then crop to this size')
parser.add_argument('--max_dataset_size', type=int, default=10000, help='Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.')
parser.add_argument('--preprocess', type=str, default='resize_and_crop', help='scaling and cropping of images at load time [resize_and_crop | crop | scale_width | scale_width_and_crop | none]')
parser.add_argument('--no_flip', action='store_true', help='if specified, do not flip the images for data augmentation')
parser.add_argument('--display_winsize', type=int, default=256, help='display window size for both visdom and HTML')
# additional parameters
parser.add_argument('--epoch', type=str, default='latest', help='which epoch to load? set to latest to use latest cached model')
parser.add_argument('--load_iter', type=int, default='0', help='which iteration to load? if load_iter > 0, the code will load models by iter_[load_iter]; otherwise, the code will load models by [epoch]')
parser.add_argument('--verbose', action='store_true', help='if specified, print more debugging information')
parser.add_argument('--suffix', default='', type=str, help='customized suffix: opt.name = opt.name + suffix: e.g., {model}_{netG}_size{load_size}')
parser.add_argument('--data_dir', type=str, required=False,
help='input files directory images can be .png .jpg .tiff')
parser.add_argument('--output_dir', type=str, required=False,
help='result dir. result depth will be png. vides are JMPG as avi')
parser.add_argument('--savecrops', type=int, required=False)
parser.add_argument('--savewholeest', type=int, required=False)
parser.add_argument('--output_resolution', type=int, required=False,
help='0 for no restriction 1 for resize to input size')
parser.add_argument('--net_receptive_field_size', type=int, required=False)
parser.add_argument('--pix2pixsize', type=int, required=False)
parser.add_argument('--generatevideo', type=int, required=False)
parser.add_argument('--depthNet', type=int, required=False, help='0: midas 1:strurturedRL')
parser.add_argument('--R0', action='store_true')
parser.add_argument('--R20', action='store_true')
parser.add_argument('--Final', action='store_true')
parser.add_argument('--colorize_results', action='store_true')
parser.add_argument('--max_res', type=float, default=np.inf)
self.initialized = True
return parser
def gather_options(self):
"""Initialize our parser with basic options(only once).
Add additional model-specific and dataset-specific options.
These options are defined in the <modify_commandline_options> function
in model and dataset classes.
"""
if not self.initialized: # check if it has been initialized
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser = self.initialize(parser)
# get the basic options
opt, _ = parser.parse_known_args()
# modify model-related parser options
model_name = opt.model
model_option_setter = models.get_option_setter(model_name)
parser = model_option_setter(parser, self.isTrain)
opt, _ = parser.parse_known_args() # parse again with new defaults
# modify dataset-related parser options
# dataset_name = opt.dataset_mode
# dataset_option_setter = pix2pix.data.get_option_setter(dataset_name)
# parser = dataset_option_setter(parser, self.isTrain)
# save and return the parser
self.parser = parser
#return parser.parse_args() #EVIL
return opt
def print_options(self, opt):
"""Print and save options
It will print both current options and default values(if different).
It will save options into a text file / [checkpoints_dir] / opt.txt
"""
message = ''
message += '----------------- Options ---------------\n'
for k, v in sorted(vars(opt).items()):
comment = ''
default = self.parser.get_default(k)
if v != default:
comment = '\t[default: %s]' % str(default)
message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment)
message += '----------------- End -------------------'
print(message)
# save to the disk
expr_dir = os.path.join(opt.checkpoints_dir, opt.name)
util.mkdirs(expr_dir)
file_name = os.path.join(expr_dir, '{}_opt.txt'.format(opt.phase))
with open(file_name, 'wt') as opt_file:
opt_file.write(message)
opt_file.write('\n')
def parse(self):
"""Parse our options, create checkpoints directory suffix, and set up gpu device."""
opt = self.gather_options()
opt.isTrain = self.isTrain # train or test
# process opt.suffix
if opt.suffix:
suffix = ('_' + opt.suffix.format(**vars(opt))) if opt.suffix != '' else ''
opt.name = opt.name + suffix
#self.print_options(opt)
# set gpu ids
str_ids = opt.gpu_ids.split(',')
opt.gpu_ids = []
for str_id in str_ids:
id = int(str_id)
if id >= 0:
opt.gpu_ids.append(id)
#if len(opt.gpu_ids) > 0:
# torch.cuda.set_device(opt.gpu_ids[0])
self.opt = opt
return self.opt

View File

@ -0,0 +1,22 @@
from .base_options import BaseOptions
class TestOptions(BaseOptions):
"""This class includes test options.
It also includes shared options defined in BaseOptions.
"""
def initialize(self, parser):
parser = BaseOptions.initialize(self, parser) # define shared options
parser.add_argument('--aspect_ratio', type=float, default=1.0, help='aspect ratio of result images')
parser.add_argument('--phase', type=str, default='test', help='train, val, test, etc')
# Dropout and Batchnorm has different behavioir during training and test.
parser.add_argument('--eval', action='store_true', help='use eval mode during test time.')
parser.add_argument('--num_test', type=int, default=50, help='how many test images to run')
# rewrite devalue values
parser.set_defaults(model='pix2pix4depth')
# To avoid cropping, the load_size should be the same as crop_size
parser.set_defaults(load_size=parser.get_default('crop_size'))
self.isTrain = False
return parser

View File

@ -0,0 +1 @@
"""This package includes a miscellaneous collection of useful helper functions."""

View File

@ -0,0 +1,110 @@
from __future__ import print_function
import os
import tarfile
import requests
from warnings import warn
from zipfile import ZipFile
from bs4 import BeautifulSoup
from os.path import abspath, isdir, join, basename
class GetData(object):
"""A Python script for downloading CycleGAN or pix2pix datasets.
Parameters:
technique (str) -- One of: 'cyclegan' or 'pix2pix'.
verbose (bool) -- If True, print additional information.
Examples:
>>> from util.get_data import GetData
>>> gd = GetData(technique='cyclegan')
>>> new_data_path = gd.get(save_path='./datasets') # options will be displayed.
Alternatively, You can use bash scripts: 'scripts/download_pix2pix_model.sh'
and 'scripts/download_cyclegan_model.sh'.
"""
def __init__(self, technique='cyclegan', verbose=True):
url_dict = {
'pix2pix': 'http://efrosgans.eecs.berkeley.edu/pix2pix/datasets/',
'cyclegan': 'https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets'
}
self.url = url_dict.get(technique.lower())
self._verbose = verbose
def _print(self, text):
if self._verbose:
print(text)
@staticmethod
def _get_options(r):
soup = BeautifulSoup(r.text, 'lxml')
options = [h.text for h in soup.find_all('a', href=True)
if h.text.endswith(('.zip', 'tar.gz'))]
return options
def _present_options(self):
r = requests.get(self.url)
options = self._get_options(r)
print('Options:\n')
for i, o in enumerate(options):
print("{0}: {1}".format(i, o))
choice = input("\nPlease enter the number of the "
"dataset above you wish to download:")
return options[int(choice)]
def _download_data(self, dataset_url, save_path):
if not isdir(save_path):
os.makedirs(save_path)
base = basename(dataset_url)
temp_save_path = join(save_path, base)
with open(temp_save_path, "wb") as f:
r = requests.get(dataset_url)
f.write(r.content)
if base.endswith('.tar.gz'):
obj = tarfile.open(temp_save_path)
elif base.endswith('.zip'):
obj = ZipFile(temp_save_path, 'r')
else:
raise ValueError("Unknown File Type: {0}.".format(base))
self._print("Unpacking Data...")
obj.extractall(save_path)
obj.close()
os.remove(temp_save_path)
def get(self, save_path, dataset=None):
"""
Download a dataset.
Parameters:
save_path (str) -- A directory to save the data to.
dataset (str) -- (optional). A specific dataset to download.
Note: this must include the file extension.
If None, options will be presented for you
to choose from.
Returns:
save_path_full (str) -- the absolute path to the downloaded data.
"""
if dataset is None:
selected_dataset = self._present_options()
else:
selected_dataset = dataset
save_path_full = join(save_path, selected_dataset.split('.')[0])
if isdir(save_path_full):
warn("\n'{0}' already exists. Voiding Download.".format(
save_path_full))
else:
self._print('Downloading Data...')
url = "{0}/{1}".format(self.url, selected_dataset)
self._download_data(url, save_path=save_path)
return abspath(save_path_full)

View File

@ -0,0 +1,47 @@
import numpy as np
class GuidedFilter():
def __init__(self, source, reference, r=64, eps= 0.05**2):
self.source = source;
self.reference = reference;
self.r = r
self.eps = eps
self.smooth = self.guidedfilter(self.source,self.reference,self.r,self.eps)
def boxfilter(self,img, r):
(rows, cols) = img.shape
imDst = np.zeros_like(img)
imCum = np.cumsum(img, 0)
imDst[0 : r+1, :] = imCum[r : 2*r+1, :]
imDst[r+1 : rows-r, :] = imCum[2*r+1 : rows, :] - imCum[0 : rows-2*r-1, :]
imDst[rows-r: rows, :] = np.tile(imCum[rows-1, :], [r, 1]) - imCum[rows-2*r-1 : rows-r-1, :]
imCum = np.cumsum(imDst, 1)
imDst[:, 0 : r+1] = imCum[:, r : 2*r+1]
imDst[:, r+1 : cols-r] = imCum[:, 2*r+1 : cols] - imCum[:, 0 : cols-2*r-1]
imDst[:, cols-r: cols] = np.tile(imCum[:, cols-1], [r, 1]).T - imCum[:, cols-2*r-1 : cols-r-1]
return imDst
def guidedfilter(self,I, p, r, eps):
(rows, cols) = I.shape
N = self.boxfilter(np.ones([rows, cols]), r)
meanI = self.boxfilter(I, r) / N
meanP = self.boxfilter(p, r) / N
meanIp = self.boxfilter(I * p, r) / N
covIp = meanIp - meanI * meanP
meanII = self.boxfilter(I * I, r) / N
varI = meanII - meanI * meanI
a = covIp / (varI + eps)
b = meanP - a * meanI
meanA = self.boxfilter(a, r) / N
meanB = self.boxfilter(b, r) / N
q = meanA * I + meanB
return q

View File

@ -0,0 +1,86 @@
import dominate
from dominate.tags import meta, h3, table, tr, td, p, a, img, br
import os
class HTML:
"""This HTML class allows us to save images and write texts into a single HTML file.
It consists of functions such as <add_header> (add a text header to the HTML file),
<add_images> (add a row of images to the HTML file), and <save> (save the HTML to the disk).
It is based on Python library 'dominate', a Python library for creating and manipulating HTML documents using a DOM API.
"""
def __init__(self, web_dir, title, refresh=0):
"""Initialize the HTML classes
Parameters:
web_dir (str) -- a directory that stores the webpage. HTML file will be created at <web_dir>/index.html; images will be saved at <web_dir/images/
title (str) -- the webpage name
refresh (int) -- how often the website refresh itself; if 0; no refreshing
"""
self.title = title
self.web_dir = web_dir
self.img_dir = os.path.join(self.web_dir, 'images')
if not os.path.exists(self.web_dir):
os.makedirs(self.web_dir)
if not os.path.exists(self.img_dir):
os.makedirs(self.img_dir)
self.doc = dominate.document(title=title)
if refresh > 0:
with self.doc.head:
meta(http_equiv="refresh", content=str(refresh))
def get_image_dir(self):
"""Return the directory that stores images"""
return self.img_dir
def add_header(self, text):
"""Insert a header to the HTML file
Parameters:
text (str) -- the header text
"""
with self.doc:
h3(text)
def add_images(self, ims, txts, links, width=400):
"""add images to the HTML file
Parameters:
ims (str list) -- a list of image paths
txts (str list) -- a list of image names shown on the website
links (str list) -- a list of hyperref links; when you click an image, it will redirect you to a new page
"""
self.t = table(border=1, style="table-layout: fixed;") # Insert a table
self.doc.add(self.t)
with self.t:
with tr():
for im, txt, link in zip(ims, txts, links):
with td(style="word-wrap: break-word;", halign="center", valign="top"):
with p():
with a(href=os.path.join('images', link)):
img(style="width:%dpx" % width, src=os.path.join('images', im))
br()
p(txt)
def save(self):
"""save the current content to the HMTL file"""
html_file = '%s/index.html' % self.web_dir
f = open(html_file, 'wt')
f.write(self.doc.render())
f.close()
if __name__ == '__main__': # we show an example usage here.
html = HTML('web/', 'test_html')
html.add_header('hello world')
ims, txts, links = [], [], []
for n in range(4):
ims.append('image_%d.png' % n)
txts.append('text_%d' % n)
links.append('image_%d.png' % n)
html.add_images(ims, txts, links)
html.save()

View File

@ -0,0 +1,54 @@
import random
import torch
class ImagePool():
"""This class implements an image buffer that stores previously generated images.
This buffer enables us to update discriminators using a history of generated images
rather than the ones produced by the latest generators.
"""
def __init__(self, pool_size):
"""Initialize the ImagePool class
Parameters:
pool_size (int) -- the size of image buffer, if pool_size=0, no buffer will be created
"""
self.pool_size = pool_size
if self.pool_size > 0: # create an empty pool
self.num_imgs = 0
self.images = []
def query(self, images):
"""Return an image from the pool.
Parameters:
images: the latest generated images from the generator
Returns images from the buffer.
By 50/100, the buffer will return input images.
By 50/100, the buffer will return images previously stored in the buffer,
and insert the current images to the buffer.
"""
if self.pool_size == 0: # if the buffer size is 0, do nothing
return images
return_images = []
for image in images:
image = torch.unsqueeze(image.data, 0)
if self.num_imgs < self.pool_size: # if the buffer is not full; keep inserting current images to the buffer
self.num_imgs = self.num_imgs + 1
self.images.append(image)
return_images.append(image)
else:
p = random.uniform(0, 1)
if p > 0.5: # by 50% chance, the buffer will return a previously stored image, and insert the current image into the buffer
random_id = random.randint(0, self.pool_size - 1) # randint is inclusive
tmp = self.images[random_id].clone()
self.images[random_id] = image
return_images.append(tmp)
else: # by another 50% chance, the buffer will return the current image
return_images.append(image)
return_images = torch.cat(return_images, 0) # collect all the images and return
return return_images

View File

@ -0,0 +1,105 @@
"""This module contains simple helper functions """
from __future__ import print_function
import torch
import numpy as np
from PIL import Image
import os
def tensor2im(input_image, imtype=np.uint16):
""""Converts a Tensor array into a numpy image array.
Parameters:
input_image (tensor) -- the input image tensor array
imtype (type) -- the desired type of the converted numpy array
"""
if not isinstance(input_image, np.ndarray):
if isinstance(input_image, torch.Tensor): # get the data from a variable
image_tensor = input_image.data
else:
return input_image
image_numpy = torch.squeeze(image_tensor).cpu().numpy() # convert it into a numpy array
image_numpy = (image_numpy + 1) / 2.0 * (2**16-1) #
else: # if it is a numpy array, do nothing
image_numpy = input_image
return image_numpy.astype(imtype)
def diagnose_network(net, name='network'):
"""Calculate and print the mean of average absolute(gradients)
Parameters:
net (torch network) -- Torch network
name (str) -- the name of the network
"""
mean = 0.0
count = 0
for param in net.parameters():
if param.grad is not None:
mean += torch.mean(torch.abs(param.grad.data))
count += 1
if count > 0:
mean = mean / count
print(name)
print(mean)
def save_image(image_numpy, image_path, aspect_ratio=1.0):
"""Save a numpy image to the disk
Parameters:
image_numpy (numpy array) -- input numpy array
image_path (str) -- the path of the image
"""
image_pil = Image.fromarray(image_numpy)
image_pil = image_pil.convert('I;16')
# image_pil = Image.fromarray(image_numpy)
# h, w, _ = image_numpy.shape
#
# if aspect_ratio > 1.0:
# image_pil = image_pil.resize((h, int(w * aspect_ratio)), Image.BICUBIC)
# if aspect_ratio < 1.0:
# image_pil = image_pil.resize((int(h / aspect_ratio), w), Image.BICUBIC)
image_pil.save(image_path)
def print_numpy(x, val=True, shp=False):
"""Print the mean, min, max, median, std, and size of a numpy array
Parameters:
val (bool) -- if print the values of the numpy array
shp (bool) -- if print the shape of the numpy array
"""
x = x.astype(np.float64)
if shp:
print('shape,', x.shape)
if val:
x = x.flatten()
print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % (
np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x)))
def mkdirs(paths):
"""create empty directories if they don't exist
Parameters:
paths (str list) -- a list of directory paths
"""
if isinstance(paths, list) and not isinstance(paths, str):
for path in paths:
mkdir(path)
else:
mkdir(paths)
def mkdir(path):
"""create a single empty directory if it didn't exist
Parameters:
path (str) -- a single directory path
"""
if not os.path.exists(path):
os.makedirs(path)

View File

@ -0,0 +1,166 @@
import numpy as np
import os
import sys
import ntpath
import time
from . import util, html
from subprocess import Popen, PIPE
import torch
if sys.version_info[0] == 2:
VisdomExceptionBase = Exception
else:
VisdomExceptionBase = ConnectionError
def save_images(webpage, visuals, image_path, aspect_ratio=1.0, width=256):
"""Save images to the disk.
Parameters:
webpage (the HTML class) -- the HTML webpage class that stores these imaegs (see html.py for more details)
visuals (OrderedDict) -- an ordered dictionary that stores (name, images (either tensor or numpy) ) pairs
image_path (str) -- the string is used to create image paths
aspect_ratio (float) -- the aspect ratio of saved images
width (int) -- the images will be resized to width x width
This function will save images stored in 'visuals' to the HTML file specified by 'webpage'.
"""
image_dir = webpage.get_image_dir()
short_path = ntpath.basename(image_path[0])
name = os.path.splitext(short_path)[0]
webpage.add_header(name)
ims, txts, links = [], [], []
for label, im_data in visuals.items():
im = util.tensor2im(im_data)
image_name = '%s_%s.png' % (name, label)
save_path = os.path.join(image_dir, image_name)
util.save_image(im, save_path, aspect_ratio=aspect_ratio)
ims.append(image_name)
txts.append(label)
links.append(image_name)
webpage.add_images(ims, txts, links, width=width)
class Visualizer():
"""This class includes several functions that can display/save images and print/save logging information.
It uses a Python library 'visdom' for display, and a Python library 'dominate' (wrapped in 'HTML') for creating HTML files with images.
"""
def __init__(self, opt):
"""Initialize the Visualizer class
Parameters:
opt -- stores all the experiment flags; needs to be a subclass of BaseOptions
Step 1: Cache the training/test options
Step 2: connect to a visdom server
Step 3: create an HTML object for saveing HTML filters
Step 4: create a logging file to store training losses
"""
self.opt = opt # cache the option
self.display_id = opt.display_id
self.use_html = opt.isTrain and not opt.no_html
self.win_size = opt.display_winsize
self.name = opt.name
self.port = opt.display_port
self.saved = False
if self.use_html: # create an HTML object at <checkpoints_dir>/web/; images will be saved under <checkpoints_dir>/web/images/
self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web')
self.img_dir = os.path.join(self.web_dir, 'images')
print('create web directory %s...' % self.web_dir)
util.mkdirs([self.web_dir, self.img_dir])
# create a logging file to store training losses
self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt')
with open(self.log_name, "a") as log_file:
now = time.strftime("%c")
log_file.write('================ Training Loss (%s) ================\n' % now)
def reset(self):
"""Reset the self.saved status"""
self.saved = False
def create_visdom_connections(self):
"""If the program could not connect to Visdom server, this function will start a new server at port < self.port > """
cmd = sys.executable + ' -m visdom.server -p %d &>/dev/null &' % self.port
print('\n\nCould not connect to Visdom server. \n Trying to start a server....')
print('Command: %s' % cmd)
Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)
def display_current_results(self, visuals, epoch, save_result):
"""Display current results on visdom; save current results to an HTML file.
Parameters:
visuals (OrderedDict) - - dictionary of images to display or save
epoch (int) - - the current epoch
save_result (bool) - - if save the current results to an HTML file
"""
if self.use_html and (save_result or not self.saved): # save images to an HTML file if they haven't been saved.
self.saved = True
# save images to the disk
for label, image in visuals.items():
image_numpy = util.tensor2im(image)
img_path = os.path.join(self.img_dir, 'epoch%.3d_%s.png' % (epoch, label))
util.save_image(image_numpy, img_path)
# update website
webpage = html.HTML(self.web_dir, 'Experiment name = %s' % self.name, refresh=1)
for n in range(epoch, 0, -1):
webpage.add_header('epoch [%d]' % n)
ims, txts, links = [], [], []
for label, image_numpy in visuals.items():
# image_numpy = util.tensor2im(image)
img_path = 'epoch%.3d_%s.png' % (n, label)
ims.append(img_path)
txts.append(label)
links.append(img_path)
webpage.add_images(ims, txts, links, width=self.win_size)
webpage.save()
# def plot_current_losses(self, epoch, counter_ratio, losses):
# """display the current losses on visdom display: dictionary of error labels and values
#
# Parameters:
# epoch (int) -- current epoch
# counter_ratio (float) -- progress (percentage) in the current epoch, between 0 to 1
# losses (OrderedDict) -- training losses stored in the format of (name, float) pairs
# """
# if not hasattr(self, 'plot_data'):
# self.plot_data = {'X': [], 'Y': [], 'legend': list(losses.keys())}
# self.plot_data['X'].append(epoch + counter_ratio)
# self.plot_data['Y'].append([losses[k] for k in self.plot_data['legend']])
# try:
# self.vis.line(
# X=np.stack([np.array(self.plot_data['X'])] * len(self.plot_data['legend']), 1),
# Y=np.array(self.plot_data['Y']),
# opts={
# 'title': self.name + ' loss over time',
# 'legend': self.plot_data['legend'],
# 'xlabel': 'epoch',
# 'ylabel': 'loss'},
# win=self.display_id)
# except VisdomExceptionBase:
# self.create_visdom_connections()
# losses: same format as |losses| of plot_current_losses
def print_current_losses(self, epoch, iters, losses, t_comp, t_data):
"""print current losses on console; also save the losses to the disk
Parameters:
epoch (int) -- current epoch
iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch)
losses (OrderedDict) -- training losses stored in the format of (name, float) pairs
t_comp (float) -- computational time per data point (normalized by batch_size)
t_data (float) -- data loading time per data point (normalized by batch_size)
"""
message = '(epoch: %d, iters: %d, time: %.3f, data: %.3f) ' % (epoch, iters, t_comp, t_data)
for k, v in losses.items():
message += '%s: %.3f ' % (k, v)
print(message) # print the message
with open(self.log_name, "a") as log_file:
log_file.write('%s\n' % message) # save the message

View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2022 Caroline Chan
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1,133 @@
import os
import cv2
import torch
import numpy as np
import torch.nn as nn
from einops import rearrange
from modules import devices
from annotator.annotator_path import models_path
norm_layer = nn.InstanceNorm2d
class ResidualBlock(nn.Module):
def __init__(self, in_features):
super(ResidualBlock, self).__init__()
conv_block = [ nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
norm_layer(in_features),
nn.ReLU(inplace=True),
nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
norm_layer(in_features)
]
self.conv_block = nn.Sequential(*conv_block)
def forward(self, x):
return x + self.conv_block(x)
class Generator(nn.Module):
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
super(Generator, self).__init__()
# Initial convolution block
model0 = [ nn.ReflectionPad2d(3),
nn.Conv2d(input_nc, 64, 7),
norm_layer(64),
nn.ReLU(inplace=True) ]
self.model0 = nn.Sequential(*model0)
# Downsampling
model1 = []
in_features = 64
out_features = in_features*2
for _ in range(2):
model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
norm_layer(out_features),
nn.ReLU(inplace=True) ]
in_features = out_features
out_features = in_features*2
self.model1 = nn.Sequential(*model1)
model2 = []
# Residual blocks
for _ in range(n_residual_blocks):
model2 += [ResidualBlock(in_features)]
self.model2 = nn.Sequential(*model2)
# Upsampling
model3 = []
out_features = in_features//2
for _ in range(2):
model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
norm_layer(out_features),
nn.ReLU(inplace=True) ]
in_features = out_features
out_features = in_features//2
self.model3 = nn.Sequential(*model3)
# Output layer
model4 = [ nn.ReflectionPad2d(3),
nn.Conv2d(64, output_nc, 7)]
if sigmoid:
model4 += [nn.Sigmoid()]
self.model4 = nn.Sequential(*model4)
def forward(self, x, cond=None):
out = self.model0(x)
out = self.model1(out)
out = self.model2(out)
out = self.model3(out)
out = self.model4(out)
return out
class LineartDetector:
model_dir = os.path.join(models_path, "lineart")
model_default = 'sk_model.pth'
model_coarse = 'sk_model2.pth'
def __init__(self, model_name):
self.model = None
self.model_name = model_name
self.device = devices.get_device_for("controlnet")
def load_model(self, name):
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/" + name
model_path = os.path.join(self.model_dir, name)
if not os.path.exists(model_path):
from modules.modelloader import load_file_from_url
load_file_from_url(remote_model_path, model_dir=self.model_dir)
model = Generator(3, 1, 3)
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
model.eval()
self.model = model.to(self.device)
def unload_model(self):
if self.model is not None:
self.model.cpu()
def __call__(self, input_image):
if self.model is None:
self.load_model(self.model_name)
self.model.to(self.device)
assert input_image.ndim == 3
image = input_image
with torch.no_grad():
image = torch.from_numpy(image).float().to(self.device)
image = image / 255.0
image = rearrange(image, 'h w c -> 1 c h w')
line = self.model(image)[0][0]
line = line.cpu().numpy()
line = (line * 255.0).clip(0, 255).astype(np.uint8)
return line

View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2022 Caroline Chan
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1,161 @@
import numpy as np
import torch
import torch.nn as nn
import functools
import os
import cv2
from einops import rearrange
from modules import devices
from annotator.annotator_path import models_path
class UnetGenerator(nn.Module):
"""Create a Unet-based generator"""
def __init__(self, input_nc, output_nc, num_downs, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False):
"""Construct a Unet generator
Parameters:
input_nc (int) -- the number of channels in input images
output_nc (int) -- the number of channels in output images
num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7,
image of size 128x128 will become of size 1x1 # at the bottleneck
ngf (int) -- the number of filters in the last conv layer
norm_layer -- normalization layer
We construct the U-Net from the innermost layer to the outermost layer.
It is a recursive process.
"""
super(UnetGenerator, self).__init__()
# construct unet structure
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True) # add the innermost layer
for _ in range(num_downs - 5): # add intermediate layers with ngf * 8 filters
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout)
# gradually reduce the number of filters from ngf * 8 to ngf
unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
self.model = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) # add the outermost layer
def forward(self, input):
"""Standard forward"""
return self.model(input)
class UnetSkipConnectionBlock(nn.Module):
"""Defines the Unet submodule with skip connection.
X -------------------identity----------------------
|-- downsampling -- |submodule| -- upsampling --|
"""
def __init__(self, outer_nc, inner_nc, input_nc=None,
submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False):
"""Construct a Unet submodule with skip connections.
Parameters:
outer_nc (int) -- the number of filters in the outer conv layer
inner_nc (int) -- the number of filters in the inner conv layer
input_nc (int) -- the number of channels in input images/features
submodule (UnetSkipConnectionBlock) -- previously defined submodules
outermost (bool) -- if this module is the outermost module
innermost (bool) -- if this module is the innermost module
norm_layer -- normalization layer
use_dropout (bool) -- if use dropout layers.
"""
super(UnetSkipConnectionBlock, self).__init__()
self.outermost = outermost
if type(norm_layer) == functools.partial:
use_bias = norm_layer.func == nn.InstanceNorm2d
else:
use_bias = norm_layer == nn.InstanceNorm2d
if input_nc is None:
input_nc = outer_nc
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4,
stride=2, padding=1, bias=use_bias)
downrelu = nn.LeakyReLU(0.2, True)
downnorm = norm_layer(inner_nc)
uprelu = nn.ReLU(True)
upnorm = norm_layer(outer_nc)
if outermost:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
kernel_size=4, stride=2,
padding=1)
down = [downconv]
up = [uprelu, upconv, nn.Tanh()]
model = down + [submodule] + up
elif innermost:
upconv = nn.ConvTranspose2d(inner_nc, outer_nc,
kernel_size=4, stride=2,
padding=1, bias=use_bias)
down = [downrelu, downconv]
up = [uprelu, upconv, upnorm]
model = down + up
else:
upconv = nn.ConvTranspose2d(inner_nc * 2, outer_nc,
kernel_size=4, stride=2,
padding=1, bias=use_bias)
down = [downrelu, downconv, downnorm]
up = [uprelu, upconv, upnorm]
if use_dropout:
model = down + [submodule] + up + [nn.Dropout(0.5)]
else:
model = down + [submodule] + up
self.model = nn.Sequential(*model)
def forward(self, x):
if self.outermost:
return self.model(x)
else: # add skip connections
return torch.cat([x, self.model(x)], 1)
class LineartAnimeDetector:
model_dir = os.path.join(models_path, "lineart_anime")
def __init__(self):
self.model = None
self.device = devices.get_device_for("controlnet")
def load_model(self):
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/netG.pth"
modelpath = os.path.join(self.model_dir, "netG.pth")
if not os.path.exists(modelpath):
from modules.modelloader import load_file_from_url
load_file_from_url(remote_model_path, model_dir=self.model_dir)
norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False)
net = UnetGenerator(3, 1, 8, 64, norm_layer=norm_layer, use_dropout=False)
ckpt = torch.load(modelpath)
for key in list(ckpt.keys()):
if 'module.' in key:
ckpt[key.replace('module.', '')] = ckpt[key]
del ckpt[key]
net.load_state_dict(ckpt)
net.eval()
self.model = net.to(self.device)
def unload_model(self):
if self.model is not None:
self.model.cpu()
def __call__(self, input_image):
if self.model is None:
self.load_model()
self.model.to(self.device)
H, W, C = input_image.shape
Hn = 256 * int(np.ceil(float(H) / 256.0))
Wn = 256 * int(np.ceil(float(W) / 256.0))
img = cv2.resize(input_image, (Wn, Hn), interpolation=cv2.INTER_CUBIC)
with torch.no_grad():
image_feed = torch.from_numpy(img).float().to(self.device)
image_feed = image_feed / 127.5 - 1.0
image_feed = rearrange(image_feed, 'h w c -> 1 c h w')
line = self.model(image_feed)[0, 0] * 127.5 + 127.5
line = line.cpu().numpy()
line = cv2.resize(line, (W, H), interpolation=cv2.INTER_CUBIC)
line = line.clip(0, 255).astype(np.uint8)
return line

View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2021 Miaomiao Li
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1,248 @@
import os
import torch
import torch.nn as nn
from PIL import Image
import fnmatch
import cv2
import sys
import numpy as np
from einops import rearrange
from modules import devices
from annotator.annotator_path import models_path
class _bn_relu_conv(nn.Module):
def __init__(self, in_filters, nb_filters, fw, fh, subsample=1):
super(_bn_relu_conv, self).__init__()
self.model = nn.Sequential(
nn.BatchNorm2d(in_filters, eps=1e-3),
nn.LeakyReLU(0.2),
nn.Conv2d(in_filters, nb_filters, (fw, fh), stride=subsample, padding=(fw//2, fh//2), padding_mode='zeros')
)
def forward(self, x):
return self.model(x)
# the following are for debugs
print("****", np.max(x.cpu().numpy()), np.min(x.cpu().numpy()), np.mean(x.cpu().numpy()), np.std(x.cpu().numpy()), x.shape)
for i,layer in enumerate(self.model):
if i != 2:
x = layer(x)
else:
x = layer(x)
#x = nn.functional.pad(x, (1, 1, 1, 1), mode='constant', value=0)
print("____", np.max(x.cpu().numpy()), np.min(x.cpu().numpy()), np.mean(x.cpu().numpy()), np.std(x.cpu().numpy()), x.shape)
print(x[0])
return x
class _u_bn_relu_conv(nn.Module):
def __init__(self, in_filters, nb_filters, fw, fh, subsample=1):
super(_u_bn_relu_conv, self).__init__()
self.model = nn.Sequential(
nn.BatchNorm2d(in_filters, eps=1e-3),
nn.LeakyReLU(0.2),
nn.Conv2d(in_filters, nb_filters, (fw, fh), stride=subsample, padding=(fw//2, fh//2)),
nn.Upsample(scale_factor=2, mode='nearest')
)
def forward(self, x):
return self.model(x)
class _shortcut(nn.Module):
def __init__(self, in_filters, nb_filters, subsample=1):
super(_shortcut, self).__init__()
self.process = False
self.model = None
if in_filters != nb_filters or subsample != 1:
self.process = True
self.model = nn.Sequential(
nn.Conv2d(in_filters, nb_filters, (1, 1), stride=subsample)
)
def forward(self, x, y):
#print(x.size(), y.size(), self.process)
if self.process:
y0 = self.model(x)
#print("merge+", torch.max(y0+y), torch.min(y0+y),torch.mean(y0+y), torch.std(y0+y), y0.shape)
return y0 + y
else:
#print("merge", torch.max(x+y), torch.min(x+y),torch.mean(x+y), torch.std(x+y), y.shape)
return x + y
class _u_shortcut(nn.Module):
def __init__(self, in_filters, nb_filters, subsample):
super(_u_shortcut, self).__init__()
self.process = False
self.model = None
if in_filters != nb_filters:
self.process = True
self.model = nn.Sequential(
nn.Conv2d(in_filters, nb_filters, (1, 1), stride=subsample, padding_mode='zeros'),
nn.Upsample(scale_factor=2, mode='nearest')
)
def forward(self, x, y):
if self.process:
return self.model(x) + y
else:
return x + y
class basic_block(nn.Module):
def __init__(self, in_filters, nb_filters, init_subsample=1):
super(basic_block, self).__init__()
self.conv1 = _bn_relu_conv(in_filters, nb_filters, 3, 3, subsample=init_subsample)
self.residual = _bn_relu_conv(nb_filters, nb_filters, 3, 3)
self.shortcut = _shortcut(in_filters, nb_filters, subsample=init_subsample)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.residual(x1)
return self.shortcut(x, x2)
class _u_basic_block(nn.Module):
def __init__(self, in_filters, nb_filters, init_subsample=1):
super(_u_basic_block, self).__init__()
self.conv1 = _u_bn_relu_conv(in_filters, nb_filters, 3, 3, subsample=init_subsample)
self.residual = _bn_relu_conv(nb_filters, nb_filters, 3, 3)
self.shortcut = _u_shortcut(in_filters, nb_filters, subsample=init_subsample)
def forward(self, x):
y = self.residual(self.conv1(x))
return self.shortcut(x, y)
class _residual_block(nn.Module):
def __init__(self, in_filters, nb_filters, repetitions, is_first_layer=False):
super(_residual_block, self).__init__()
layers = []
for i in range(repetitions):
init_subsample = 1
if i == repetitions - 1 and not is_first_layer:
init_subsample = 2
if i == 0:
l = basic_block(in_filters=in_filters, nb_filters=nb_filters, init_subsample=init_subsample)
else:
l = basic_block(in_filters=nb_filters, nb_filters=nb_filters, init_subsample=init_subsample)
layers.append(l)
self.model = nn.Sequential(*layers)
def forward(self, x):
return self.model(x)
class _upsampling_residual_block(nn.Module):
def __init__(self, in_filters, nb_filters, repetitions):
super(_upsampling_residual_block, self).__init__()
layers = []
for i in range(repetitions):
l = None
if i == 0:
l = _u_basic_block(in_filters=in_filters, nb_filters=nb_filters)#(input)
else:
l = basic_block(in_filters=nb_filters, nb_filters=nb_filters)#(input)
layers.append(l)
self.model = nn.Sequential(*layers)
def forward(self, x):
return self.model(x)
class res_skip(nn.Module):
def __init__(self):
super(res_skip, self).__init__()
self.block0 = _residual_block(in_filters=1, nb_filters=24, repetitions=2, is_first_layer=True)#(input)
self.block1 = _residual_block(in_filters=24, nb_filters=48, repetitions=3)#(block0)
self.block2 = _residual_block(in_filters=48, nb_filters=96, repetitions=5)#(block1)
self.block3 = _residual_block(in_filters=96, nb_filters=192, repetitions=7)#(block2)
self.block4 = _residual_block(in_filters=192, nb_filters=384, repetitions=12)#(block3)
self.block5 = _upsampling_residual_block(in_filters=384, nb_filters=192, repetitions=7)#(block4)
self.res1 = _shortcut(in_filters=192, nb_filters=192)#(block3, block5, subsample=(1,1))
self.block6 = _upsampling_residual_block(in_filters=192, nb_filters=96, repetitions=5)#(res1)
self.res2 = _shortcut(in_filters=96, nb_filters=96)#(block2, block6, subsample=(1,1))
self.block7 = _upsampling_residual_block(in_filters=96, nb_filters=48, repetitions=3)#(res2)
self.res3 = _shortcut(in_filters=48, nb_filters=48)#(block1, block7, subsample=(1,1))
self.block8 = _upsampling_residual_block(in_filters=48, nb_filters=24, repetitions=2)#(res3)
self.res4 = _shortcut(in_filters=24, nb_filters=24)#(block0,block8, subsample=(1,1))
self.block9 = _residual_block(in_filters=24, nb_filters=16, repetitions=2, is_first_layer=True)#(res4)
self.conv15 = _bn_relu_conv(in_filters=16, nb_filters=1, fh=1, fw=1, subsample=1)#(block7)
def forward(self, x):
x0 = self.block0(x)
x1 = self.block1(x0)
x2 = self.block2(x1)
x3 = self.block3(x2)
x4 = self.block4(x3)
x5 = self.block5(x4)
res1 = self.res1(x3, x5)
x6 = self.block6(res1)
res2 = self.res2(x2, x6)
x7 = self.block7(res2)
res3 = self.res3(x1, x7)
x8 = self.block8(res3)
res4 = self.res4(x0, x8)
x9 = self.block9(res4)
y = self.conv15(x9)
return y
class MangaLineExtration:
model_dir = os.path.join(models_path, "manga_line")
def __init__(self):
self.model = None
self.device = devices.get_device_for("controlnet")
def load_model(self):
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/erika.pth"
modelpath = os.path.join(self.model_dir, "erika.pth")
if not os.path.exists(modelpath):
from modules.modelloader import load_file_from_url
load_file_from_url(remote_model_path, model_dir=self.model_dir)
#norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False)
net = res_skip()
ckpt = torch.load(modelpath)
for key in list(ckpt.keys()):
if 'module.' in key:
ckpt[key.replace('module.', '')] = ckpt[key]
del ckpt[key]
net.load_state_dict(ckpt)
net.eval()
self.model = net.to(self.device)
def unload_model(self):
if self.model is not None:
self.model.cpu()
def __call__(self, input_image):
if self.model is None:
self.load_model()
self.model.to(self.device)
img = cv2.cvtColor(input_image, cv2.COLOR_RGB2GRAY)
img = np.ascontiguousarray(img.copy()).copy()
with torch.no_grad():
image_feed = torch.from_numpy(img).float().to(self.device)
image_feed = rearrange(image_feed, 'h w -> 1 1 h w')
line = self.model(image_feed)
line = 255 - line.cpu().numpy()[0, 0]
return line.clip(0, 255).astype(np.uint8)

View File

@ -0,0 +1,5 @@
from .mediapipe_face_common import generate_annotation
def apply_mediapipe_face(image, max_faces: int = 1, min_confidence: float = 0.5):
return generate_annotation(image, max_faces, min_confidence)

View File

@ -0,0 +1,155 @@
from typing import Mapping
import mediapipe as mp
import numpy
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_face_detection = mp.solutions.face_detection # Only for counting faces.
mp_face_mesh = mp.solutions.face_mesh
mp_face_connections = mp.solutions.face_mesh_connections.FACEMESH_TESSELATION
mp_hand_connections = mp.solutions.hands_connections.HAND_CONNECTIONS
mp_body_connections = mp.solutions.pose_connections.POSE_CONNECTIONS
DrawingSpec = mp.solutions.drawing_styles.DrawingSpec
PoseLandmark = mp.solutions.drawing_styles.PoseLandmark
min_face_size_pixels: int = 64
f_thick = 2
f_rad = 1
right_iris_draw = DrawingSpec(color=(10, 200, 250), thickness=f_thick, circle_radius=f_rad)
right_eye_draw = DrawingSpec(color=(10, 200, 180), thickness=f_thick, circle_radius=f_rad)
right_eyebrow_draw = DrawingSpec(color=(10, 220, 180), thickness=f_thick, circle_radius=f_rad)
left_iris_draw = DrawingSpec(color=(250, 200, 10), thickness=f_thick, circle_radius=f_rad)
left_eye_draw = DrawingSpec(color=(180, 200, 10), thickness=f_thick, circle_radius=f_rad)
left_eyebrow_draw = DrawingSpec(color=(180, 220, 10), thickness=f_thick, circle_radius=f_rad)
mouth_draw = DrawingSpec(color=(10, 180, 10), thickness=f_thick, circle_radius=f_rad)
head_draw = DrawingSpec(color=(10, 200, 10), thickness=f_thick, circle_radius=f_rad)
# mp_face_mesh.FACEMESH_CONTOURS has all the items we care about.
face_connection_spec = {}
for edge in mp_face_mesh.FACEMESH_FACE_OVAL:
face_connection_spec[edge] = head_draw
for edge in mp_face_mesh.FACEMESH_LEFT_EYE:
face_connection_spec[edge] = left_eye_draw
for edge in mp_face_mesh.FACEMESH_LEFT_EYEBROW:
face_connection_spec[edge] = left_eyebrow_draw
# for edge in mp_face_mesh.FACEMESH_LEFT_IRIS:
# face_connection_spec[edge] = left_iris_draw
for edge in mp_face_mesh.FACEMESH_RIGHT_EYE:
face_connection_spec[edge] = right_eye_draw
for edge in mp_face_mesh.FACEMESH_RIGHT_EYEBROW:
face_connection_spec[edge] = right_eyebrow_draw
# for edge in mp_face_mesh.FACEMESH_RIGHT_IRIS:
# face_connection_spec[edge] = right_iris_draw
for edge in mp_face_mesh.FACEMESH_LIPS:
face_connection_spec[edge] = mouth_draw
iris_landmark_spec = {468: right_iris_draw, 473: left_iris_draw}
def draw_pupils(image, landmark_list, drawing_spec, halfwidth: int = 2):
"""We have a custom function to draw the pupils because the mp.draw_landmarks method requires a parameter for all
landmarks. Until our PR is merged into mediapipe, we need this separate method."""
if len(image.shape) != 3:
raise ValueError("Input image must be H,W,C.")
image_rows, image_cols, image_channels = image.shape
if image_channels != 3: # BGR channels
raise ValueError('Input image must contain three channel bgr data.')
for idx, landmark in enumerate(landmark_list.landmark):
if (
(landmark.HasField('visibility') and landmark.visibility < 0.9) or
(landmark.HasField('presence') and landmark.presence < 0.5)
):
continue
if landmark.x >= 1.0 or landmark.x < 0 or landmark.y >= 1.0 or landmark.y < 0:
continue
image_x = int(image_cols*landmark.x)
image_y = int(image_rows*landmark.y)
draw_color = None
if isinstance(drawing_spec, Mapping):
if drawing_spec.get(idx) is None:
continue
else:
draw_color = drawing_spec[idx].color
elif isinstance(drawing_spec, DrawingSpec):
draw_color = drawing_spec.color
image[image_y-halfwidth:image_y+halfwidth, image_x-halfwidth:image_x+halfwidth, :] = draw_color
def reverse_channels(image):
"""Given a numpy array in RGB form, convert to BGR. Will also convert from BGR to RGB."""
# im[:,:,::-1] is a neat hack to convert BGR to RGB by reversing the indexing order.
# im[:,:,::[2,1,0]] would also work but makes a copy of the data.
return image[:, :, ::-1]
def generate_annotation(
img_rgb,
max_faces: int,
min_confidence: float
):
"""
Find up to 'max_faces' inside the provided input image.
If min_face_size_pixels is provided and nonzero it will be used to filter faces that occupy less than this many
pixels in the image.
"""
with mp_face_mesh.FaceMesh(
static_image_mode=True,
max_num_faces=max_faces,
refine_landmarks=True,
min_detection_confidence=min_confidence,
) as facemesh:
img_height, img_width, img_channels = img_rgb.shape
assert(img_channels == 3)
results = facemesh.process(img_rgb).multi_face_landmarks
if results is None:
print("No faces detected in controlnet image for Mediapipe face annotator.")
return numpy.zeros_like(img_rgb)
# Filter faces that are too small
filtered_landmarks = []
for lm in results:
landmarks = lm.landmark
face_rect = [
landmarks[0].x,
landmarks[0].y,
landmarks[0].x,
landmarks[0].y,
] # Left, up, right, down.
for i in range(len(landmarks)):
face_rect[0] = min(face_rect[0], landmarks[i].x)
face_rect[1] = min(face_rect[1], landmarks[i].y)
face_rect[2] = max(face_rect[2], landmarks[i].x)
face_rect[3] = max(face_rect[3], landmarks[i].y)
if min_face_size_pixels > 0:
face_width = abs(face_rect[2] - face_rect[0])
face_height = abs(face_rect[3] - face_rect[1])
face_width_pixels = face_width * img_width
face_height_pixels = face_height * img_height
face_size = min(face_width_pixels, face_height_pixels)
if face_size >= min_face_size_pixels:
filtered_landmarks.append(lm)
else:
filtered_landmarks.append(lm)
# Annotations are drawn in BGR for some reason, but we don't need to flip a zero-filled image at the start.
empty = numpy.zeros_like(img_rgb)
# Draw detected faces:
for face_landmarks in filtered_landmarks:
mp_drawing.draw_landmarks(
empty,
face_landmarks,
connections=face_connection_spec.keys(),
landmark_drawing_spec=None,
connection_drawing_spec=face_connection_spec
)
draw_pupils(empty, face_landmarks, iris_landmark_spec, 2)
# Flip BGR back to RGB.
empty = reverse_channels(empty).copy()
return empty

View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2019 Intel ISL (Intel Intelligent Systems Lab)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -0,0 +1,49 @@
import cv2
import numpy as np
import torch
from einops import rearrange
from .api import MiDaSInference
from modules import devices
model = None
def unload_midas_model():
global model
if model is not None:
model = model.cpu()
def apply_midas(input_image, a=np.pi * 2.0, bg_th=0.1):
global model
if model is None:
model = MiDaSInference(model_type="dpt_hybrid")
if devices.get_device_for("controlnet").type != 'mps':
model = model.to(devices.get_device_for("controlnet"))
assert input_image.ndim == 3
image_depth = input_image
with torch.no_grad():
image_depth = torch.from_numpy(image_depth).float()
if devices.get_device_for("controlnet").type != 'mps':
image_depth = image_depth.to(devices.get_device_for("controlnet"))
image_depth = image_depth / 127.5 - 1.0
image_depth = rearrange(image_depth, 'h w c -> 1 c h w')
depth = model(image_depth)[0]
depth_pt = depth.clone()
depth_pt -= torch.min(depth_pt)
depth_pt /= torch.max(depth_pt)
depth_pt = depth_pt.cpu().numpy()
depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8)
depth_np = depth.cpu().numpy()
x = cv2.Sobel(depth_np, cv2.CV_32F, 1, 0, ksize=3)
y = cv2.Sobel(depth_np, cv2.CV_32F, 0, 1, ksize=3)
z = np.ones_like(x) * a
x[depth_pt < bg_th] = 0
y[depth_pt < bg_th] = 0
normal = np.stack([x, y, z], axis=2)
normal /= np.sum(normal ** 2.0, axis=2, keepdims=True) ** 0.5
normal_image = (normal * 127.5 + 127.5).clip(0, 255).astype(np.uint8)[:, :, ::-1]
return depth_image, normal_image

View File

@ -0,0 +1,181 @@
# based on https://github.com/isl-org/MiDaS
import cv2
import torch
import torch.nn as nn
import os
from annotator.annotator_path import models_path
from torchvision.transforms import Compose
from .midas.dpt_depth import DPTDepthModel
from .midas.midas_net import MidasNet
from .midas.midas_net_custom import MidasNet_small
from .midas.transforms import Resize, NormalizeImage, PrepareForNet
base_model_path = os.path.join(models_path, "midas")
old_modeldir = os.path.dirname(os.path.realpath(__file__))
remote_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/dpt_hybrid-midas-501f0c75.pt"
ISL_PATHS = {
"dpt_large": os.path.join(base_model_path, "dpt_large-midas-2f21e586.pt"),
"dpt_hybrid": os.path.join(base_model_path, "dpt_hybrid-midas-501f0c75.pt"),
"midas_v21": "",
"midas_v21_small": "",
}
OLD_ISL_PATHS = {
"dpt_large": os.path.join(old_modeldir, "dpt_large-midas-2f21e586.pt"),
"dpt_hybrid": os.path.join(old_modeldir, "dpt_hybrid-midas-501f0c75.pt"),
"midas_v21": "",
"midas_v21_small": "",
}
def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self
def load_midas_transform(model_type):
# https://github.com/isl-org/MiDaS/blob/master/run.py
# load transform only
if model_type == "dpt_large": # DPT-Large
net_w, net_h = 384, 384
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "dpt_hybrid": # DPT-Hybrid
net_w, net_h = 384, 384
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "midas_v21":
net_w, net_h = 384, 384
resize_mode = "upper_bound"
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
elif model_type == "midas_v21_small":
net_w, net_h = 256, 256
resize_mode = "upper_bound"
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
else:
assert False, f"model_type '{model_type}' not implemented, use: --model_type large"
transform = Compose(
[
Resize(
net_w,
net_h,
resize_target=None,
keep_aspect_ratio=True,
ensure_multiple_of=32,
resize_method=resize_mode,
image_interpolation_method=cv2.INTER_CUBIC,
),
normalization,
PrepareForNet(),
]
)
return transform
def load_model(model_type):
# https://github.com/isl-org/MiDaS/blob/master/run.py
# load network
model_path = ISL_PATHS[model_type]
old_model_path = OLD_ISL_PATHS[model_type]
if model_type == "dpt_large": # DPT-Large
model = DPTDepthModel(
path=model_path,
backbone="vitl16_384",
non_negative=True,
)
net_w, net_h = 384, 384
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "dpt_hybrid": # DPT-Hybrid
if os.path.exists(old_model_path):
model_path = old_model_path
elif not os.path.exists(model_path):
from modules.modelloader import load_file_from_url
load_file_from_url(remote_model_path, model_dir=base_model_path)
model = DPTDepthModel(
path=model_path,
backbone="vitb_rn50_384",
non_negative=True,
)
net_w, net_h = 384, 384
resize_mode = "minimal"
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
elif model_type == "midas_v21":
model = MidasNet(model_path, non_negative=True)
net_w, net_h = 384, 384
resize_mode = "upper_bound"
normalization = NormalizeImage(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
elif model_type == "midas_v21_small":
model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True,
non_negative=True, blocks={'expand': True})
net_w, net_h = 256, 256
resize_mode = "upper_bound"
normalization = NormalizeImage(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
else:
print(f"model_type '{model_type}' not implemented, use: --model_type large")
assert False
transform = Compose(
[
Resize(
net_w,
net_h,
resize_target=None,
keep_aspect_ratio=True,
ensure_multiple_of=32,
resize_method=resize_mode,
image_interpolation_method=cv2.INTER_CUBIC,
),
normalization,
PrepareForNet(),
]
)
return model.eval(), transform
class MiDaSInference(nn.Module):
MODEL_TYPES_TORCH_HUB = [
"DPT_Large",
"DPT_Hybrid",
"MiDaS_small"
]
MODEL_TYPES_ISL = [
"dpt_large",
"dpt_hybrid",
"midas_v21",
"midas_v21_small",
]
def __init__(self, model_type):
super().__init__()
assert (model_type in self.MODEL_TYPES_ISL)
model, _ = load_model(model_type)
self.model = model
self.model.train = disabled_train
def forward(self, x):
with torch.no_grad():
prediction = self.model(x)
return prediction

View File

@ -0,0 +1,16 @@
import torch
class BaseModel(torch.nn.Module):
def load(self, path):
"""Load model from file.
Args:
path (str): file path
"""
parameters = torch.load(path, map_location=torch.device('cpu'))
if "optimizer" in parameters:
parameters = parameters["model"]
self.load_state_dict(parameters)

View File

@ -0,0 +1,342 @@
import torch
import torch.nn as nn
from .vit import (
_make_pretrained_vitb_rn50_384,
_make_pretrained_vitl16_384,
_make_pretrained_vitb16_384,
forward_vit,
)
def _make_encoder(backbone, features, use_pretrained, groups=1, expand=False, exportable=True, hooks=None, use_vit_only=False, use_readout="ignore",):
if backbone == "vitl16_384":
pretrained = _make_pretrained_vitl16_384(
use_pretrained, hooks=hooks, use_readout=use_readout
)
scratch = _make_scratch(
[256, 512, 1024, 1024], features, groups=groups, expand=expand
) # ViT-L/16 - 85.0% Top1 (backbone)
elif backbone == "vitb_rn50_384":
pretrained = _make_pretrained_vitb_rn50_384(
use_pretrained,
hooks=hooks,
use_vit_only=use_vit_only,
use_readout=use_readout,
)
scratch = _make_scratch(
[256, 512, 768, 768], features, groups=groups, expand=expand
) # ViT-H/16 - 85.0% Top1 (backbone)
elif backbone == "vitb16_384":
pretrained = _make_pretrained_vitb16_384(
use_pretrained, hooks=hooks, use_readout=use_readout
)
scratch = _make_scratch(
[96, 192, 384, 768], features, groups=groups, expand=expand
) # ViT-B/16 - 84.6% Top1 (backbone)
elif backbone == "resnext101_wsl":
pretrained = _make_pretrained_resnext101_wsl(use_pretrained)
scratch = _make_scratch([256, 512, 1024, 2048], features, groups=groups, expand=expand) # efficientnet_lite3
elif backbone == "efficientnet_lite3":
pretrained = _make_pretrained_efficientnet_lite3(use_pretrained, exportable=exportable)
scratch = _make_scratch([32, 48, 136, 384], features, groups=groups, expand=expand) # efficientnet_lite3
else:
print(f"Backbone '{backbone}' not implemented")
assert False
return pretrained, scratch
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
scratch = nn.Module()
out_shape1 = out_shape
out_shape2 = out_shape
out_shape3 = out_shape
out_shape4 = out_shape
if expand==True:
out_shape1 = out_shape
out_shape2 = out_shape*2
out_shape3 = out_shape*4
out_shape4 = out_shape*8
scratch.layer1_rn = nn.Conv2d(
in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
scratch.layer2_rn = nn.Conv2d(
in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
scratch.layer3_rn = nn.Conv2d(
in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
scratch.layer4_rn = nn.Conv2d(
in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
)
return scratch
def _make_pretrained_efficientnet_lite3(use_pretrained, exportable=False):
efficientnet = torch.hub.load(
"rwightman/gen-efficientnet-pytorch",
"tf_efficientnet_lite3",
pretrained=use_pretrained,
exportable=exportable
)
return _make_efficientnet_backbone(efficientnet)
def _make_efficientnet_backbone(effnet):
pretrained = nn.Module()
pretrained.layer1 = nn.Sequential(
effnet.conv_stem, effnet.bn1, effnet.act1, *effnet.blocks[0:2]
)
pretrained.layer2 = nn.Sequential(*effnet.blocks[2:3])
pretrained.layer3 = nn.Sequential(*effnet.blocks[3:5])
pretrained.layer4 = nn.Sequential(*effnet.blocks[5:9])
return pretrained
def _make_resnet_backbone(resnet):
pretrained = nn.Module()
pretrained.layer1 = nn.Sequential(
resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1
)
pretrained.layer2 = resnet.layer2
pretrained.layer3 = resnet.layer3
pretrained.layer4 = resnet.layer4
return pretrained
def _make_pretrained_resnext101_wsl(use_pretrained):
resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl")
return _make_resnet_backbone(resnet)
class Interpolate(nn.Module):
"""Interpolation module.
"""
def __init__(self, scale_factor, mode, align_corners=False):
"""Init.
Args:
scale_factor (float): scaling
mode (str): interpolation mode
"""
super(Interpolate, self).__init__()
self.interp = nn.functional.interpolate
self.scale_factor = scale_factor
self.mode = mode
self.align_corners = align_corners
def forward(self, x):
"""Forward pass.
Args:
x (tensor): input
Returns:
tensor: interpolated data
"""
x = self.interp(
x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners
)
return x
class ResidualConvUnit(nn.Module):
"""Residual convolution module.
"""
def __init__(self, features):
"""Init.
Args:
features (int): number of features
"""
super().__init__()
self.conv1 = nn.Conv2d(
features, features, kernel_size=3, stride=1, padding=1, bias=True
)
self.conv2 = nn.Conv2d(
features, features, kernel_size=3, stride=1, padding=1, bias=True
)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
"""Forward pass.
Args:
x (tensor): input
Returns:
tensor: output
"""
out = self.relu(x)
out = self.conv1(out)
out = self.relu(out)
out = self.conv2(out)
return out + x
class FeatureFusionBlock(nn.Module):
"""Feature fusion block.
"""
def __init__(self, features):
"""Init.
Args:
features (int): number of features
"""
super(FeatureFusionBlock, self).__init__()
self.resConfUnit1 = ResidualConvUnit(features)
self.resConfUnit2 = ResidualConvUnit(features)
def forward(self, *xs):
"""Forward pass.
Returns:
tensor: output
"""
output = xs[0]
if len(xs) == 2:
output += self.resConfUnit1(xs[1])
output = self.resConfUnit2(output)
output = nn.functional.interpolate(
output, scale_factor=2, mode="bilinear", align_corners=True
)
return output
class ResidualConvUnit_custom(nn.Module):
"""Residual convolution module.
"""
def __init__(self, features, activation, bn):
"""Init.
Args:
features (int): number of features
"""
super().__init__()
self.bn = bn
self.groups=1
self.conv1 = nn.Conv2d(
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
)
self.conv2 = nn.Conv2d(
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
)
if self.bn==True:
self.bn1 = nn.BatchNorm2d(features)
self.bn2 = nn.BatchNorm2d(features)
self.activation = activation
self.skip_add = nn.quantized.FloatFunctional()
def forward(self, x):
"""Forward pass.
Args:
x (tensor): input
Returns:
tensor: output
"""
out = self.activation(x)
out = self.conv1(out)
if self.bn==True:
out = self.bn1(out)
out = self.activation(out)
out = self.conv2(out)
if self.bn==True:
out = self.bn2(out)
if self.groups > 1:
out = self.conv_merge(out)
return self.skip_add.add(out, x)
# return out + x
class FeatureFusionBlock_custom(nn.Module):
"""Feature fusion block.
"""
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True):
"""Init.
Args:
features (int): number of features
"""
super(FeatureFusionBlock_custom, self).__init__()
self.deconv = deconv
self.align_corners = align_corners
self.groups=1
self.expand = expand
out_features = features
if self.expand==True:
out_features = features//2
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn)
self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn)
self.skip_add = nn.quantized.FloatFunctional()
def forward(self, *xs):
"""Forward pass.
Returns:
tensor: output
"""
output = xs[0]
if len(xs) == 2:
res = self.resConfUnit1(xs[1])
output = self.skip_add.add(output, res)
# output += res
output = self.resConfUnit2(output)
output = nn.functional.interpolate(
output, scale_factor=2, mode="bilinear", align_corners=self.align_corners
)
output = self.out_conv(output)
return output

View File

@ -0,0 +1,109 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from .base_model import BaseModel
from .blocks import (
FeatureFusionBlock,
FeatureFusionBlock_custom,
Interpolate,
_make_encoder,
forward_vit,
)
def _make_fusion_block(features, use_bn):
return FeatureFusionBlock_custom(
features,
nn.ReLU(False),
deconv=False,
bn=use_bn,
expand=False,
align_corners=True,
)
class DPT(BaseModel):
def __init__(
self,
head,
features=256,
backbone="vitb_rn50_384",
readout="project",
channels_last=False,
use_bn=False,
):
super(DPT, self).__init__()
self.channels_last = channels_last
hooks = {
"vitb_rn50_384": [0, 1, 8, 11],
"vitb16_384": [2, 5, 8, 11],
"vitl16_384": [5, 11, 17, 23],
}
# Instantiate backbone and reassemble blocks
self.pretrained, self.scratch = _make_encoder(
backbone,
features,
False, # Set to true of you want to train from scratch, uses ImageNet weights
groups=1,
expand=False,
exportable=False,
hooks=hooks[backbone],
use_readout=readout,
)
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
self.scratch.output_conv = head
def forward(self, x):
if self.channels_last == True:
x.contiguous(memory_format=torch.channels_last)
layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x)
layer_1_rn = self.scratch.layer1_rn(layer_1)
layer_2_rn = self.scratch.layer2_rn(layer_2)
layer_3_rn = self.scratch.layer3_rn(layer_3)
layer_4_rn = self.scratch.layer4_rn(layer_4)
path_4 = self.scratch.refinenet4(layer_4_rn)
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
out = self.scratch.output_conv(path_1)
return out
class DPTDepthModel(DPT):
def __init__(self, path=None, non_negative=True, **kwargs):
features = kwargs["features"] if "features" in kwargs else 256
head = nn.Sequential(
nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
nn.ReLU(True) if non_negative else nn.Identity(),
nn.Identity(),
)
super().__init__(head, **kwargs)
if path is not None:
self.load(path)
def forward(self, x):
return super().forward(x).squeeze(dim=1)

View File

@ -0,0 +1,76 @@
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
This file contains code that is adapted from
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
"""
import torch
import torch.nn as nn
from .base_model import BaseModel
from .blocks import FeatureFusionBlock, Interpolate, _make_encoder
class MidasNet(BaseModel):
"""Network for monocular depth estimation.
"""
def __init__(self, path=None, features=256, non_negative=True):
"""Init.
Args:
path (str, optional): Path to saved model. Defaults to None.
features (int, optional): Number of features. Defaults to 256.
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
"""
print("Loading weights: ", path)
super(MidasNet, self).__init__()
use_pretrained = False if path is None else True
self.pretrained, self.scratch = _make_encoder(backbone="resnext101_wsl", features=features, use_pretrained=use_pretrained)
self.scratch.refinenet4 = FeatureFusionBlock(features)
self.scratch.refinenet3 = FeatureFusionBlock(features)
self.scratch.refinenet2 = FeatureFusionBlock(features)
self.scratch.refinenet1 = FeatureFusionBlock(features)
self.scratch.output_conv = nn.Sequential(
nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1),
Interpolate(scale_factor=2, mode="bilinear"),
nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1),
nn.ReLU(True),
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
nn.ReLU(True) if non_negative else nn.Identity(),
)
if path:
self.load(path)
def forward(self, x):
"""Forward pass.
Args:
x (tensor): input data (image)
Returns:
tensor: depth
"""
layer_1 = self.pretrained.layer1(x)
layer_2 = self.pretrained.layer2(layer_1)
layer_3 = self.pretrained.layer3(layer_2)
layer_4 = self.pretrained.layer4(layer_3)
layer_1_rn = self.scratch.layer1_rn(layer_1)
layer_2_rn = self.scratch.layer2_rn(layer_2)
layer_3_rn = self.scratch.layer3_rn(layer_3)
layer_4_rn = self.scratch.layer4_rn(layer_4)
path_4 = self.scratch.refinenet4(layer_4_rn)
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
out = self.scratch.output_conv(path_1)
return torch.squeeze(out, dim=1)

View File

@ -0,0 +1,128 @@
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
This file contains code that is adapted from
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
"""
import torch
import torch.nn as nn
from .base_model import BaseModel
from .blocks import FeatureFusionBlock, FeatureFusionBlock_custom, Interpolate, _make_encoder
class MidasNet_small(BaseModel):
"""Network for monocular depth estimation.
"""
def __init__(self, path=None, features=64, backbone="efficientnet_lite3", non_negative=True, exportable=True, channels_last=False, align_corners=True,
blocks={'expand': True}):
"""Init.
Args:
path (str, optional): Path to saved model. Defaults to None.
features (int, optional): Number of features. Defaults to 256.
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
"""
print("Loading weights: ", path)
super(MidasNet_small, self).__init__()
use_pretrained = False if path else True
self.channels_last = channels_last
self.blocks = blocks
self.backbone = backbone
self.groups = 1
features1=features
features2=features
features3=features
features4=features
self.expand = False
if "expand" in self.blocks and self.blocks['expand'] == True:
self.expand = True
features1=features
features2=features*2
features3=features*4
features4=features*8
self.pretrained, self.scratch = _make_encoder(self.backbone, features, use_pretrained, groups=self.groups, expand=self.expand, exportable=exportable)
self.scratch.activation = nn.ReLU(False)
self.scratch.refinenet4 = FeatureFusionBlock_custom(features4, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
self.scratch.refinenet3 = FeatureFusionBlock_custom(features3, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
self.scratch.refinenet2 = FeatureFusionBlock_custom(features2, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
self.scratch.refinenet1 = FeatureFusionBlock_custom(features1, self.scratch.activation, deconv=False, bn=False, align_corners=align_corners)
self.scratch.output_conv = nn.Sequential(
nn.Conv2d(features, features//2, kernel_size=3, stride=1, padding=1, groups=self.groups),
Interpolate(scale_factor=2, mode="bilinear"),
nn.Conv2d(features//2, 32, kernel_size=3, stride=1, padding=1),
self.scratch.activation,
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
nn.ReLU(True) if non_negative else nn.Identity(),
nn.Identity(),
)
if path:
self.load(path)
def forward(self, x):
"""Forward pass.
Args:
x (tensor): input data (image)
Returns:
tensor: depth
"""
if self.channels_last==True:
print("self.channels_last = ", self.channels_last)
x.contiguous(memory_format=torch.channels_last)
layer_1 = self.pretrained.layer1(x)
layer_2 = self.pretrained.layer2(layer_1)
layer_3 = self.pretrained.layer3(layer_2)
layer_4 = self.pretrained.layer4(layer_3)
layer_1_rn = self.scratch.layer1_rn(layer_1)
layer_2_rn = self.scratch.layer2_rn(layer_2)
layer_3_rn = self.scratch.layer3_rn(layer_3)
layer_4_rn = self.scratch.layer4_rn(layer_4)
path_4 = self.scratch.refinenet4(layer_4_rn)
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
out = self.scratch.output_conv(path_1)
return torch.squeeze(out, dim=1)
def fuse_model(m):
prev_previous_type = nn.Identity()
prev_previous_name = ''
previous_type = nn.Identity()
previous_name = ''
for name, module in m.named_modules():
if prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d and type(module) == nn.ReLU:
# print("FUSED ", prev_previous_name, previous_name, name)
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name, name], inplace=True)
elif prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d:
# print("FUSED ", prev_previous_name, previous_name)
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name], inplace=True)
# elif previous_type == nn.Conv2d and type(module) == nn.ReLU:
# print("FUSED ", previous_name, name)
# torch.quantization.fuse_modules(m, [previous_name, name], inplace=True)
prev_previous_type = previous_type
prev_previous_name = previous_name
previous_type = type(module)
previous_name = name

View File

@ -0,0 +1,234 @@
import numpy as np
import cv2
import math
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
Args:
sample (dict): sample
size (tuple): image size
Returns:
tuple: new size
"""
shape = list(sample["disparity"].shape)
if shape[0] >= size[0] and shape[1] >= size[1]:
return sample
scale = [0, 0]
scale[0] = size[0] / shape[0]
scale[1] = size[1] / shape[1]
scale = max(scale)
shape[0] = math.ceil(scale * shape[0])
shape[1] = math.ceil(scale * shape[1])
# resize
sample["image"] = cv2.resize(
sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
)
sample["disparity"] = cv2.resize(
sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
)
sample["mask"] = cv2.resize(
sample["mask"].astype(np.float32),
tuple(shape[::-1]),
interpolation=cv2.INTER_NEAREST,
)
sample["mask"] = sample["mask"].astype(bool)
return tuple(shape)
class Resize(object):
"""Resize sample to given size (width, height).
"""
def __init__(
self,
width,
height,
resize_target=True,
keep_aspect_ratio=False,
ensure_multiple_of=1,
resize_method="lower_bound",
image_interpolation_method=cv2.INTER_AREA,
):
"""Init.
Args:
width (int): desired output width
height (int): desired output height
resize_target (bool, optional):
True: Resize the full sample (image, mask, target).
False: Resize image only.
Defaults to True.
keep_aspect_ratio (bool, optional):
True: Keep the aspect ratio of the input sample.
Output sample might not have the given width and height, and
resize behaviour depends on the parameter 'resize_method'.
Defaults to False.
ensure_multiple_of (int, optional):
Output width and height is constrained to be multiple of this parameter.
Defaults to 1.
resize_method (str, optional):
"lower_bound": Output will be at least as large as the given size.
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
Defaults to "lower_bound".
"""
self.__width = width
self.__height = height
self.__resize_target = resize_target
self.__keep_aspect_ratio = keep_aspect_ratio
self.__multiple_of = ensure_multiple_of
self.__resize_method = resize_method
self.__image_interpolation_method = image_interpolation_method
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
if max_val is not None and y > max_val:
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
if y < min_val:
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
return y
def get_size(self, width, height):
# determine new height and width
scale_height = self.__height / height
scale_width = self.__width / width
if self.__keep_aspect_ratio:
if self.__resize_method == "lower_bound":
# scale such that output size is lower bound
if scale_width > scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "upper_bound":
# scale such that output size is upper bound
if scale_width < scale_height:
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
elif self.__resize_method == "minimal":
# scale as least as possbile
if abs(1 - scale_width) < abs(1 - scale_height):
# fit width
scale_height = scale_width
else:
# fit height
scale_width = scale_height
else:
raise ValueError(
f"resize_method {self.__resize_method} not implemented"
)
if self.__resize_method == "lower_bound":
new_height = self.constrain_to_multiple_of(
scale_height * height, min_val=self.__height
)
new_width = self.constrain_to_multiple_of(
scale_width * width, min_val=self.__width
)
elif self.__resize_method == "upper_bound":
new_height = self.constrain_to_multiple_of(
scale_height * height, max_val=self.__height
)
new_width = self.constrain_to_multiple_of(
scale_width * width, max_val=self.__width
)
elif self.__resize_method == "minimal":
new_height = self.constrain_to_multiple_of(scale_height * height)
new_width = self.constrain_to_multiple_of(scale_width * width)
else:
raise ValueError(f"resize_method {self.__resize_method} not implemented")
return (new_width, new_height)
def __call__(self, sample):
width, height = self.get_size(
sample["image"].shape[1], sample["image"].shape[0]
)
# resize sample
sample["image"] = cv2.resize(
sample["image"],
(width, height),
interpolation=self.__image_interpolation_method,
)
if self.__resize_target:
if "disparity" in sample:
sample["disparity"] = cv2.resize(
sample["disparity"],
(width, height),
interpolation=cv2.INTER_NEAREST,
)
if "depth" in sample:
sample["depth"] = cv2.resize(
sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST
)
sample["mask"] = cv2.resize(
sample["mask"].astype(np.float32),
(width, height),
interpolation=cv2.INTER_NEAREST,
)
sample["mask"] = sample["mask"].astype(bool)
return sample
class NormalizeImage(object):
"""Normlize image by given mean and std.
"""
def __init__(self, mean, std):
self.__mean = mean
self.__std = std
def __call__(self, sample):
sample["image"] = (sample["image"] - self.__mean) / self.__std
return sample
class PrepareForNet(object):
"""Prepare sample for usage as network input.
"""
def __init__(self):
pass
def __call__(self, sample):
image = np.transpose(sample["image"], (2, 0, 1))
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
if "mask" in sample:
sample["mask"] = sample["mask"].astype(np.float32)
sample["mask"] = np.ascontiguousarray(sample["mask"])
if "disparity" in sample:
disparity = sample["disparity"].astype(np.float32)
sample["disparity"] = np.ascontiguousarray(disparity)
if "depth" in sample:
depth = sample["depth"].astype(np.float32)
sample["depth"] = np.ascontiguousarray(depth)
return sample

View File

@ -0,0 +1,491 @@
import torch
import torch.nn as nn
import timm
import types
import math
import torch.nn.functional as F
class Slice(nn.Module):
def __init__(self, start_index=1):
super(Slice, self).__init__()
self.start_index = start_index
def forward(self, x):
return x[:, self.start_index :]
class AddReadout(nn.Module):
def __init__(self, start_index=1):
super(AddReadout, self).__init__()
self.start_index = start_index
def forward(self, x):
if self.start_index == 2:
readout = (x[:, 0] + x[:, 1]) / 2
else:
readout = x[:, 0]
return x[:, self.start_index :] + readout.unsqueeze(1)
class ProjectReadout(nn.Module):
def __init__(self, in_features, start_index=1):
super(ProjectReadout, self).__init__()
self.start_index = start_index
self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU())
def forward(self, x):
readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :])
features = torch.cat((x[:, self.start_index :], readout), -1)
return self.project(features)
class Transpose(nn.Module):
def __init__(self, dim0, dim1):
super(Transpose, self).__init__()
self.dim0 = dim0
self.dim1 = dim1
def forward(self, x):
x = x.transpose(self.dim0, self.dim1)
return x
def forward_vit(pretrained, x):
b, c, h, w = x.shape
glob = pretrained.model.forward_flex(x)
layer_1 = pretrained.activations["1"]
layer_2 = pretrained.activations["2"]
layer_3 = pretrained.activations["3"]
layer_4 = pretrained.activations["4"]
layer_1 = pretrained.act_postprocess1[0:2](layer_1)
layer_2 = pretrained.act_postprocess2[0:2](layer_2)
layer_3 = pretrained.act_postprocess3[0:2](layer_3)
layer_4 = pretrained.act_postprocess4[0:2](layer_4)
unflatten = nn.Sequential(
nn.Unflatten(
2,
torch.Size(
[
h // pretrained.model.patch_size[1],
w // pretrained.model.patch_size[0],
]
),
)
)
if layer_1.ndim == 3:
layer_1 = unflatten(layer_1)
if layer_2.ndim == 3:
layer_2 = unflatten(layer_2)
if layer_3.ndim == 3:
layer_3 = unflatten(layer_3)
if layer_4.ndim == 3:
layer_4 = unflatten(layer_4)
layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1)
layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2)
layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3)
layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4)
return layer_1, layer_2, layer_3, layer_4
def _resize_pos_embed(self, posemb, gs_h, gs_w):
posemb_tok, posemb_grid = (
posemb[:, : self.start_index],
posemb[0, self.start_index :],
)
gs_old = int(math.sqrt(len(posemb_grid)))
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear")
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1)
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
return posemb
def forward_flex(self, x):
b, c, h, w = x.shape
pos_embed = self._resize_pos_embed(
self.pos_embed, h // self.patch_size[1], w // self.patch_size[0]
)
B = x.shape[0]
if hasattr(self.patch_embed, "backbone"):
x = self.patch_embed.backbone(x)
if isinstance(x, (list, tuple)):
x = x[-1] # last feature if backbone outputs list/tuple of features
x = self.patch_embed.proj(x).flatten(2).transpose(1, 2)
if getattr(self, "dist_token", None) is not None:
cls_tokens = self.cls_token.expand(
B, -1, -1
) # stole cls_tokens impl from Phil Wang, thanks
dist_token = self.dist_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, dist_token, x), dim=1)
else:
cls_tokens = self.cls_token.expand(
B, -1, -1
) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
x = x + pos_embed
x = self.pos_drop(x)
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
return x
activations = {}
def get_activation(name):
def hook(model, input, output):
activations[name] = output
return hook
def get_readout_oper(vit_features, features, use_readout, start_index=1):
if use_readout == "ignore":
readout_oper = [Slice(start_index)] * len(features)
elif use_readout == "add":
readout_oper = [AddReadout(start_index)] * len(features)
elif use_readout == "project":
readout_oper = [
ProjectReadout(vit_features, start_index) for out_feat in features
]
else:
assert (
False
), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'"
return readout_oper
def _make_vit_b16_backbone(
model,
features=[96, 192, 384, 768],
size=[384, 384],
hooks=[2, 5, 8, 11],
vit_features=768,
use_readout="ignore",
start_index=1,
):
pretrained = nn.Module()
pretrained.model = model
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
pretrained.activations = activations
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
# 32, 48, 136, 384
pretrained.act_postprocess1 = nn.Sequential(
readout_oper[0],
Transpose(1, 2),
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
nn.Conv2d(
in_channels=vit_features,
out_channels=features[0],
kernel_size=1,
stride=1,
padding=0,
),
nn.ConvTranspose2d(
in_channels=features[0],
out_channels=features[0],
kernel_size=4,
stride=4,
padding=0,
bias=True,
dilation=1,
groups=1,
),
)
pretrained.act_postprocess2 = nn.Sequential(
readout_oper[1],
Transpose(1, 2),
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
nn.Conv2d(
in_channels=vit_features,
out_channels=features[1],
kernel_size=1,
stride=1,
padding=0,
),
nn.ConvTranspose2d(
in_channels=features[1],
out_channels=features[1],
kernel_size=2,
stride=2,
padding=0,
bias=True,
dilation=1,
groups=1,
),
)
pretrained.act_postprocess3 = nn.Sequential(
readout_oper[2],
Transpose(1, 2),
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
nn.Conv2d(
in_channels=vit_features,
out_channels=features[2],
kernel_size=1,
stride=1,
padding=0,
),
)
pretrained.act_postprocess4 = nn.Sequential(
readout_oper[3],
Transpose(1, 2),
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
nn.Conv2d(
in_channels=vit_features,
out_channels=features[3],
kernel_size=1,
stride=1,
padding=0,
),
nn.Conv2d(
in_channels=features[3],
out_channels=features[3],
kernel_size=3,
stride=2,
padding=1,
),
)
pretrained.model.start_index = start_index
pretrained.model.patch_size = [16, 16]
# We inject this function into the VisionTransformer instances so that
# we can use it with interpolated position embeddings without modifying the library source.
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
pretrained.model._resize_pos_embed = types.MethodType(
_resize_pos_embed, pretrained.model
)
return pretrained
def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None):
model = timm.create_model("vit_large_patch16_384", pretrained=pretrained)
hooks = [5, 11, 17, 23] if hooks == None else hooks
return _make_vit_b16_backbone(
model,
features=[256, 512, 1024, 1024],
hooks=hooks,
vit_features=1024,
use_readout=use_readout,
)
def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None):
model = timm.create_model("vit_base_patch16_384", pretrained=pretrained)
hooks = [2, 5, 8, 11] if hooks == None else hooks
return _make_vit_b16_backbone(
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
)
def _make_pretrained_deitb16_384(pretrained, use_readout="ignore", hooks=None):
model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained)
hooks = [2, 5, 8, 11] if hooks == None else hooks
return _make_vit_b16_backbone(
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
)
def _make_pretrained_deitb16_distil_384(pretrained, use_readout="ignore", hooks=None):
model = timm.create_model(
"vit_deit_base_distilled_patch16_384", pretrained=pretrained
)
hooks = [2, 5, 8, 11] if hooks == None else hooks
return _make_vit_b16_backbone(
model,
features=[96, 192, 384, 768],
hooks=hooks,
use_readout=use_readout,
start_index=2,
)
def _make_vit_b_rn50_backbone(
model,
features=[256, 512, 768, 768],
size=[384, 384],
hooks=[0, 1, 8, 11],
vit_features=768,
use_vit_only=False,
use_readout="ignore",
start_index=1,
):
pretrained = nn.Module()
pretrained.model = model
if use_vit_only == True:
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
else:
pretrained.model.patch_embed.backbone.stages[0].register_forward_hook(
get_activation("1")
)
pretrained.model.patch_embed.backbone.stages[1].register_forward_hook(
get_activation("2")
)
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
pretrained.activations = activations
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
if use_vit_only == True:
pretrained.act_postprocess1 = nn.Sequential(
readout_oper[0],
Transpose(1, 2),
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
nn.Conv2d(
in_channels=vit_features,
out_channels=features[0],
kernel_size=1,
stride=1,
padding=0,
),
nn.ConvTranspose2d(
in_channels=features[0],
out_channels=features[0],
kernel_size=4,
stride=4,
padding=0,
bias=True,
dilation=1,
groups=1,
),
)
pretrained.act_postprocess2 = nn.Sequential(
readout_oper[1],
Transpose(1, 2),
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
nn.Conv2d(
in_channels=vit_features,
out_channels=features[1],
kernel_size=1,
stride=1,
padding=0,
),
nn.ConvTranspose2d(
in_channels=features[1],
out_channels=features[1],
kernel_size=2,
stride=2,
padding=0,
bias=True,
dilation=1,
groups=1,
),
)
else:
pretrained.act_postprocess1 = nn.Sequential(
nn.Identity(), nn.Identity(), nn.Identity()
)
pretrained.act_postprocess2 = nn.Sequential(
nn.Identity(), nn.Identity(), nn.Identity()
)
pretrained.act_postprocess3 = nn.Sequential(
readout_oper[2],
Transpose(1, 2),
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
nn.Conv2d(
in_channels=vit_features,
out_channels=features[2],
kernel_size=1,
stride=1,
padding=0,
),
)
pretrained.act_postprocess4 = nn.Sequential(
readout_oper[3],
Transpose(1, 2),
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
nn.Conv2d(
in_channels=vit_features,
out_channels=features[3],
kernel_size=1,
stride=1,
padding=0,
),
nn.Conv2d(
in_channels=features[3],
out_channels=features[3],
kernel_size=3,
stride=2,
padding=1,
),
)
pretrained.model.start_index = start_index
pretrained.model.patch_size = [16, 16]
# We inject this function into the VisionTransformer instances so that
# we can use it with interpolated position embeddings without modifying the library source.
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
# We inject this function into the VisionTransformer instances so that
# we can use it with interpolated position embeddings without modifying the library source.
pretrained.model._resize_pos_embed = types.MethodType(
_resize_pos_embed, pretrained.model
)
return pretrained
def _make_pretrained_vitb_rn50_384(
pretrained, use_readout="ignore", hooks=None, use_vit_only=False
):
model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained)
hooks = [0, 1, 8, 11] if hooks == None else hooks
return _make_vit_b_rn50_backbone(
model,
features=[256, 512, 768, 768],
size=[384, 384],
hooks=hooks,
use_vit_only=use_vit_only,
use_readout=use_readout,
)

View File

@ -0,0 +1,189 @@
"""Utils for monoDepth."""
import sys
import re
import numpy as np
import cv2
import torch
def read_pfm(path):
"""Read pfm file.
Args:
path (str): path to file
Returns:
tuple: (data, scale)
"""
with open(path, "rb") as file:
color = None
width = None
height = None
scale = None
endian = None
header = file.readline().rstrip()
if header.decode("ascii") == "PF":
color = True
elif header.decode("ascii") == "Pf":
color = False
else:
raise Exception("Not a PFM file: " + path)
dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii"))
if dim_match:
width, height = list(map(int, dim_match.groups()))
else:
raise Exception("Malformed PFM header.")
scale = float(file.readline().decode("ascii").rstrip())
if scale < 0:
# little-endian
endian = "<"
scale = -scale
else:
# big-endian
endian = ">"
data = np.fromfile(file, endian + "f")
shape = (height, width, 3) if color else (height, width)
data = np.reshape(data, shape)
data = np.flipud(data)
return data, scale
def write_pfm(path, image, scale=1):
"""Write pfm file.
Args:
path (str): pathto file
image (array): data
scale (int, optional): Scale. Defaults to 1.
"""
with open(path, "wb") as file:
color = None
if image.dtype.name != "float32":
raise Exception("Image dtype must be float32.")
image = np.flipud(image)
if len(image.shape) == 3 and image.shape[2] == 3: # color image
color = True
elif (
len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1
): # greyscale
color = False
else:
raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.")
file.write("PF\n" if color else "Pf\n".encode())
file.write("%d %d\n".encode() % (image.shape[1], image.shape[0]))
endian = image.dtype.byteorder
if endian == "<" or endian == "=" and sys.byteorder == "little":
scale = -scale
file.write("%f\n".encode() % scale)
image.tofile(file)
def read_image(path):
"""Read image and output RGB image (0-1).
Args:
path (str): path to file
Returns:
array: RGB image (0-1)
"""
img = cv2.imread(path)
if img.ndim == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0
return img
def resize_image(img):
"""Resize image and make it fit for network.
Args:
img (array): image
Returns:
tensor: data ready for network
"""
height_orig = img.shape[0]
width_orig = img.shape[1]
if width_orig > height_orig:
scale = width_orig / 384
else:
scale = height_orig / 384
height = (np.ceil(height_orig / scale / 32) * 32).astype(int)
width = (np.ceil(width_orig / scale / 32) * 32).astype(int)
img_resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)
img_resized = (
torch.from_numpy(np.transpose(img_resized, (2, 0, 1))).contiguous().float()
)
img_resized = img_resized.unsqueeze(0)
return img_resized
def resize_depth(depth, width, height):
"""Resize depth map and bring to CPU (numpy).
Args:
depth (tensor): depth
width (int): image width
height (int): image height
Returns:
array: processed depth
"""
depth = torch.squeeze(depth[0, :, :, :]).to("cpu")
depth_resized = cv2.resize(
depth.numpy(), (width, height), interpolation=cv2.INTER_CUBIC
)
return depth_resized
def write_depth(path, depth, bits=1):
"""Write depth map to pfm and png file.
Args:
path (str): filepath without extension
depth (array): depth
"""
write_pfm(path + ".pfm", depth.astype(np.float32))
depth_min = depth.min()
depth_max = depth.max()
max_val = (2**(8*bits))-1
if depth_max - depth_min > np.finfo("float").eps:
out = max_val * (depth - depth_min) / (depth_max - depth_min)
else:
out = np.zeros(depth.shape, dtype=depth.type)
if bits == 1:
cv2.imwrite(path + ".png", out.astype("uint8"))
elif bits == 2:
cv2.imwrite(path + ".png", out.astype("uint16"))
return

View File

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright 2021-present NAVER Corp.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@ -0,0 +1,49 @@
import cv2
import numpy as np
import torch
import os
from einops import rearrange
from .models.mbv2_mlsd_tiny import MobileV2_MLSD_Tiny
from .models.mbv2_mlsd_large import MobileV2_MLSD_Large
from .utils import pred_lines
from modules import devices
from annotator.annotator_path import models_path
mlsdmodel = None
remote_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/mlsd_large_512_fp32.pth"
old_modeldir = os.path.dirname(os.path.realpath(__file__))
modeldir = os.path.join(models_path, "mlsd")
def unload_mlsd_model():
global mlsdmodel
if mlsdmodel is not None:
mlsdmodel = mlsdmodel.cpu()
def apply_mlsd(input_image, thr_v, thr_d):
global modelpath, mlsdmodel
if mlsdmodel is None:
modelpath = os.path.join(modeldir, "mlsd_large_512_fp32.pth")
old_modelpath = os.path.join(old_modeldir, "mlsd_large_512_fp32.pth")
if os.path.exists(old_modelpath):
modelpath = old_modelpath
elif not os.path.exists(modelpath):
from modules.modelloader import load_file_from_url
load_file_from_url(remote_model_path, model_dir=modeldir)
mlsdmodel = MobileV2_MLSD_Large()
mlsdmodel.load_state_dict(torch.load(modelpath), strict=True)
mlsdmodel = mlsdmodel.to(devices.get_device_for("controlnet")).eval()
model = mlsdmodel
assert input_image.ndim == 3
img = input_image
img_output = np.zeros_like(img)
try:
with torch.no_grad():
lines = pred_lines(img, model, [img.shape[0], img.shape[1]], thr_v, thr_d)
for line in lines:
x_start, y_start, x_end, y_end = [int(val) for val in line]
cv2.line(img_output, (x_start, y_start), (x_end, y_end), [255, 255, 255], 1)
except Exception as e:
pass
return img_output[:, :, 0]

View File

@ -0,0 +1,292 @@
import os
import sys
import torch
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
from torch.nn import functional as F
class BlockTypeA(nn.Module):
def __init__(self, in_c1, in_c2, out_c1, out_c2, upscale = True):
super(BlockTypeA, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(in_c2, out_c2, kernel_size=1),
nn.BatchNorm2d(out_c2),
nn.ReLU(inplace=True)
)
self.conv2 = nn.Sequential(
nn.Conv2d(in_c1, out_c1, kernel_size=1),
nn.BatchNorm2d(out_c1),
nn.ReLU(inplace=True)
)
self.upscale = upscale
def forward(self, a, b):
b = self.conv1(b)
a = self.conv2(a)
if self.upscale:
b = F.interpolate(b, scale_factor=2.0, mode='bilinear', align_corners=True)
return torch.cat((a, b), dim=1)
class BlockTypeB(nn.Module):
def __init__(self, in_c, out_c):
super(BlockTypeB, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
nn.BatchNorm2d(in_c),
nn.ReLU()
)
self.conv2 = nn.Sequential(
nn.Conv2d(in_c, out_c, kernel_size=3, padding=1),
nn.BatchNorm2d(out_c),
nn.ReLU()
)
def forward(self, x):
x = self.conv1(x) + x
x = self.conv2(x)
return x
class BlockTypeC(nn.Module):
def __init__(self, in_c, out_c):
super(BlockTypeC, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(in_c, in_c, kernel_size=3, padding=5, dilation=5),
nn.BatchNorm2d(in_c),
nn.ReLU()
)
self.conv2 = nn.Sequential(
nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
nn.BatchNorm2d(in_c),
nn.ReLU()
)
self.conv3 = nn.Conv2d(in_c, out_c, kernel_size=1)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
return x
def _make_divisible(v, divisor, min_value=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
:param v:
:param divisor:
:param min_value:
:return:
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
class ConvBNReLU(nn.Sequential):
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
self.channel_pad = out_planes - in_planes
self.stride = stride
#padding = (kernel_size - 1) // 2
# TFLite uses slightly different padding than PyTorch
if stride == 2:
padding = 0
else:
padding = (kernel_size - 1) // 2
super(ConvBNReLU, self).__init__(
nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
nn.BatchNorm2d(out_planes),
nn.ReLU6(inplace=True)
)
self.max_pool = nn.MaxPool2d(kernel_size=stride, stride=stride)
def forward(self, x):
# TFLite uses different padding
if self.stride == 2:
x = F.pad(x, (0, 1, 0, 1), "constant", 0)
#print(x.shape)
for module in self:
if not isinstance(module, nn.MaxPool2d):
x = module(x)
return x
class InvertedResidual(nn.Module):
def __init__(self, inp, oup, stride, expand_ratio):
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2]
hidden_dim = int(round(inp * expand_ratio))
self.use_res_connect = self.stride == 1 and inp == oup
layers = []
if expand_ratio != 1:
# pw
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
layers.extend([
# dw
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
])
self.conv = nn.Sequential(*layers)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
class MobileNetV2(nn.Module):
def __init__(self, pretrained=True):
"""
MobileNet V2 main class
Args:
num_classes (int): Number of classes
width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
inverted_residual_setting: Network structure
round_nearest (int): Round the number of channels in each layer to be a multiple of this number
Set to 1 to turn off rounding
block: Module specifying inverted residual building block for mobilenet
"""
super(MobileNetV2, self).__init__()
block = InvertedResidual
input_channel = 32
last_channel = 1280
width_mult = 1.0
round_nearest = 8
inverted_residual_setting = [
# t, c, n, s
[1, 16, 1, 1],
[6, 24, 2, 2],
[6, 32, 3, 2],
[6, 64, 4, 2],
[6, 96, 3, 1],
#[6, 160, 3, 2],
#[6, 320, 1, 1],
]
# only check the first element, assuming user knows t,c,n,s are required
if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
raise ValueError("inverted_residual_setting should be non-empty "
"or a 4-element list, got {}".format(inverted_residual_setting))
# building first layer
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
features = [ConvBNReLU(4, input_channel, stride=2)]
# building inverted residual blocks
for t, c, n, s in inverted_residual_setting:
output_channel = _make_divisible(c * width_mult, round_nearest)
for i in range(n):
stride = s if i == 0 else 1
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
input_channel = output_channel
self.features = nn.Sequential(*features)
self.fpn_selected = [1, 3, 6, 10, 13]
# weight initialization
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
if pretrained:
self._load_pretrained_model()
def _forward_impl(self, x):
# This exists since TorchScript doesn't support inheritance, so the superclass method
# (this one) needs to have a name other than `forward` that can be accessed in a subclass
fpn_features = []
for i, f in enumerate(self.features):
if i > self.fpn_selected[-1]:
break
x = f(x)
if i in self.fpn_selected:
fpn_features.append(x)
c1, c2, c3, c4, c5 = fpn_features
return c1, c2, c3, c4, c5
def forward(self, x):
return self._forward_impl(x)
def _load_pretrained_model(self):
pretrain_dict = model_zoo.load_url('https://download.pytorch.org/models/mobilenet_v2-b0353104.pth')
model_dict = {}
state_dict = self.state_dict()
for k, v in pretrain_dict.items():
if k in state_dict:
model_dict[k] = v
state_dict.update(model_dict)
self.load_state_dict(state_dict)
class MobileV2_MLSD_Large(nn.Module):
def __init__(self):
super(MobileV2_MLSD_Large, self).__init__()
self.backbone = MobileNetV2(pretrained=False)
## A, B
self.block15 = BlockTypeA(in_c1= 64, in_c2= 96,
out_c1= 64, out_c2=64,
upscale=False)
self.block16 = BlockTypeB(128, 64)
## A, B
self.block17 = BlockTypeA(in_c1 = 32, in_c2 = 64,
out_c1= 64, out_c2= 64)
self.block18 = BlockTypeB(128, 64)
## A, B
self.block19 = BlockTypeA(in_c1=24, in_c2=64,
out_c1=64, out_c2=64)
self.block20 = BlockTypeB(128, 64)
## A, B, C
self.block21 = BlockTypeA(in_c1=16, in_c2=64,
out_c1=64, out_c2=64)
self.block22 = BlockTypeB(128, 64)
self.block23 = BlockTypeC(64, 16)
def forward(self, x):
c1, c2, c3, c4, c5 = self.backbone(x)
x = self.block15(c4, c5)
x = self.block16(x)
x = self.block17(c3, x)
x = self.block18(x)
x = self.block19(c2, x)
x = self.block20(x)
x = self.block21(c1, x)
x = self.block22(x)
x = self.block23(x)
x = x[:, 7:, :, :]
return x

View File

@ -0,0 +1,275 @@
import os
import sys
import torch
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
from torch.nn import functional as F
class BlockTypeA(nn.Module):
def __init__(self, in_c1, in_c2, out_c1, out_c2, upscale = True):
super(BlockTypeA, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(in_c2, out_c2, kernel_size=1),
nn.BatchNorm2d(out_c2),
nn.ReLU(inplace=True)
)
self.conv2 = nn.Sequential(
nn.Conv2d(in_c1, out_c1, kernel_size=1),
nn.BatchNorm2d(out_c1),
nn.ReLU(inplace=True)
)
self.upscale = upscale
def forward(self, a, b):
b = self.conv1(b)
a = self.conv2(a)
b = F.interpolate(b, scale_factor=2.0, mode='bilinear', align_corners=True)
return torch.cat((a, b), dim=1)
class BlockTypeB(nn.Module):
def __init__(self, in_c, out_c):
super(BlockTypeB, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
nn.BatchNorm2d(in_c),
nn.ReLU()
)
self.conv2 = nn.Sequential(
nn.Conv2d(in_c, out_c, kernel_size=3, padding=1),
nn.BatchNorm2d(out_c),
nn.ReLU()
)
def forward(self, x):
x = self.conv1(x) + x
x = self.conv2(x)
return x
class BlockTypeC(nn.Module):
def __init__(self, in_c, out_c):
super(BlockTypeC, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(in_c, in_c, kernel_size=3, padding=5, dilation=5),
nn.BatchNorm2d(in_c),
nn.ReLU()
)
self.conv2 = nn.Sequential(
nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
nn.BatchNorm2d(in_c),
nn.ReLU()
)
self.conv3 = nn.Conv2d(in_c, out_c, kernel_size=1)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
return x
def _make_divisible(v, divisor, min_value=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
:param v:
:param divisor:
:param min_value:
:return:
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
class ConvBNReLU(nn.Sequential):
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
self.channel_pad = out_planes - in_planes
self.stride = stride
#padding = (kernel_size - 1) // 2
# TFLite uses slightly different padding than PyTorch
if stride == 2:
padding = 0
else:
padding = (kernel_size - 1) // 2
super(ConvBNReLU, self).__init__(
nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
nn.BatchNorm2d(out_planes),
nn.ReLU6(inplace=True)
)
self.max_pool = nn.MaxPool2d(kernel_size=stride, stride=stride)
def forward(self, x):
# TFLite uses different padding
if self.stride == 2:
x = F.pad(x, (0, 1, 0, 1), "constant", 0)
#print(x.shape)
for module in self:
if not isinstance(module, nn.MaxPool2d):
x = module(x)
return x
class InvertedResidual(nn.Module):
def __init__(self, inp, oup, stride, expand_ratio):
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2]
hidden_dim = int(round(inp * expand_ratio))
self.use_res_connect = self.stride == 1 and inp == oup
layers = []
if expand_ratio != 1:
# pw
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
layers.extend([
# dw
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
])
self.conv = nn.Sequential(*layers)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
class MobileNetV2(nn.Module):
def __init__(self, pretrained=True):
"""
MobileNet V2 main class
Args:
num_classes (int): Number of classes
width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
inverted_residual_setting: Network structure
round_nearest (int): Round the number of channels in each layer to be a multiple of this number
Set to 1 to turn off rounding
block: Module specifying inverted residual building block for mobilenet
"""
super(MobileNetV2, self).__init__()
block = InvertedResidual
input_channel = 32
last_channel = 1280
width_mult = 1.0
round_nearest = 8
inverted_residual_setting = [
# t, c, n, s
[1, 16, 1, 1],
[6, 24, 2, 2],
[6, 32, 3, 2],
[6, 64, 4, 2],
#[6, 96, 3, 1],
#[6, 160, 3, 2],
#[6, 320, 1, 1],
]
# only check the first element, assuming user knows t,c,n,s are required
if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
raise ValueError("inverted_residual_setting should be non-empty "
"or a 4-element list, got {}".format(inverted_residual_setting))
# building first layer
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
features = [ConvBNReLU(4, input_channel, stride=2)]
# building inverted residual blocks
for t, c, n, s in inverted_residual_setting:
output_channel = _make_divisible(c * width_mult, round_nearest)
for i in range(n):
stride = s if i == 0 else 1
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
input_channel = output_channel
self.features = nn.Sequential(*features)
self.fpn_selected = [3, 6, 10]
# weight initialization
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
#if pretrained:
# self._load_pretrained_model()
def _forward_impl(self, x):
# This exists since TorchScript doesn't support inheritance, so the superclass method
# (this one) needs to have a name other than `forward` that can be accessed in a subclass
fpn_features = []
for i, f in enumerate(self.features):
if i > self.fpn_selected[-1]:
break
x = f(x)
if i in self.fpn_selected:
fpn_features.append(x)
c2, c3, c4 = fpn_features
return c2, c3, c4
def forward(self, x):
return self._forward_impl(x)
def _load_pretrained_model(self):
pretrain_dict = model_zoo.load_url('https://download.pytorch.org/models/mobilenet_v2-b0353104.pth')
model_dict = {}
state_dict = self.state_dict()
for k, v in pretrain_dict.items():
if k in state_dict:
model_dict[k] = v
state_dict.update(model_dict)
self.load_state_dict(state_dict)
class MobileV2_MLSD_Tiny(nn.Module):
def __init__(self):
super(MobileV2_MLSD_Tiny, self).__init__()
self.backbone = MobileNetV2(pretrained=True)
self.block12 = BlockTypeA(in_c1= 32, in_c2= 64,
out_c1= 64, out_c2=64)
self.block13 = BlockTypeB(128, 64)
self.block14 = BlockTypeA(in_c1 = 24, in_c2 = 64,
out_c1= 32, out_c2= 32)
self.block15 = BlockTypeB(64, 64)
self.block16 = BlockTypeC(64, 16)
def forward(self, x):
c2, c3, c4 = self.backbone(x)
x = self.block12(c3, c4)
x = self.block13(x)
x = self.block14(c2, x)
x = self.block15(x)
x = self.block16(x)
x = x[:, 7:, :, :]
#print(x.shape)
x = F.interpolate(x, scale_factor=2.0, mode='bilinear', align_corners=True)
return x

View File

@ -0,0 +1,581 @@
'''
modified by lihaoweicv
pytorch version
'''
'''
M-LSD
Copyright 2021-present NAVER Corp.
Apache License v2.0
'''
import os
import numpy as np
import cv2
import torch
from torch.nn import functional as F
from modules import devices
def deccode_output_score_and_ptss(tpMap, topk_n = 200, ksize = 5):
'''
tpMap:
center: tpMap[1, 0, :, :]
displacement: tpMap[1, 1:5, :, :]
'''
b, c, h, w = tpMap.shape
assert b==1, 'only support bsize==1'
displacement = tpMap[:, 1:5, :, :][0]
center = tpMap[:, 0, :, :]
heat = torch.sigmoid(center)
hmax = F.max_pool2d( heat, (ksize, ksize), stride=1, padding=(ksize-1)//2)
keep = (hmax == heat).float()
heat = heat * keep
heat = heat.reshape(-1, )
scores, indices = torch.topk(heat, topk_n, dim=-1, largest=True)
yy = torch.floor_divide(indices, w).unsqueeze(-1)
xx = torch.fmod(indices, w).unsqueeze(-1)
ptss = torch.cat((yy, xx),dim=-1)
ptss = ptss.detach().cpu().numpy()
scores = scores.detach().cpu().numpy()
displacement = displacement.detach().cpu().numpy()
displacement = displacement.transpose((1,2,0))
return ptss, scores, displacement
def pred_lines(image, model,
input_shape=[512, 512],
score_thr=0.10,
dist_thr=20.0):
h, w, _ = image.shape
h_ratio, w_ratio = [h / input_shape[0], w / input_shape[1]]
resized_image = np.concatenate([cv2.resize(image, (input_shape[1], input_shape[0]), interpolation=cv2.INTER_AREA),
np.ones([input_shape[0], input_shape[1], 1])], axis=-1)
resized_image = resized_image.transpose((2,0,1))
batch_image = np.expand_dims(resized_image, axis=0).astype('float32')
batch_image = (batch_image / 127.5) - 1.0
batch_image = torch.from_numpy(batch_image).float().to(devices.get_device_for("controlnet"))
outputs = model(batch_image)
pts, pts_score, vmap = deccode_output_score_and_ptss(outputs, 200, 3)
start = vmap[:, :, :2]
end = vmap[:, :, 2:]
dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1))
segments_list = []
for center, score in zip(pts, pts_score):
y, x = center
distance = dist_map[y, x]
if score > score_thr and distance > dist_thr:
disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :]
x_start = x + disp_x_start
y_start = y + disp_y_start
x_end = x + disp_x_end
y_end = y + disp_y_end
segments_list.append([x_start, y_start, x_end, y_end])
lines = 2 * np.array(segments_list) # 256 > 512
lines[:, 0] = lines[:, 0] * w_ratio
lines[:, 1] = lines[:, 1] * h_ratio
lines[:, 2] = lines[:, 2] * w_ratio
lines[:, 3] = lines[:, 3] * h_ratio
return lines
def pred_squares(image,
model,
input_shape=[512, 512],
params={'score': 0.06,
'outside_ratio': 0.28,
'inside_ratio': 0.45,
'w_overlap': 0.0,
'w_degree': 1.95,
'w_length': 0.0,
'w_area': 1.86,
'w_center': 0.14}):
'''
shape = [height, width]
'''
h, w, _ = image.shape
original_shape = [h, w]
resized_image = np.concatenate([cv2.resize(image, (input_shape[0], input_shape[1]), interpolation=cv2.INTER_AREA),
np.ones([input_shape[0], input_shape[1], 1])], axis=-1)
resized_image = resized_image.transpose((2, 0, 1))
batch_image = np.expand_dims(resized_image, axis=0).astype('float32')
batch_image = (batch_image / 127.5) - 1.0
batch_image = torch.from_numpy(batch_image).float().to(devices.get_device_for("controlnet"))
outputs = model(batch_image)
pts, pts_score, vmap = deccode_output_score_and_ptss(outputs, 200, 3)
start = vmap[:, :, :2] # (x, y)
end = vmap[:, :, 2:] # (x, y)
dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1))
junc_list = []
segments_list = []
for junc, score in zip(pts, pts_score):
y, x = junc
distance = dist_map[y, x]
if score > params['score'] and distance > 20.0:
junc_list.append([x, y])
disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :]
d_arrow = 1.0
x_start = x + d_arrow * disp_x_start
y_start = y + d_arrow * disp_y_start
x_end = x + d_arrow * disp_x_end
y_end = y + d_arrow * disp_y_end
segments_list.append([x_start, y_start, x_end, y_end])
segments = np.array(segments_list)
####### post processing for squares
# 1. get unique lines
point = np.array([[0, 0]])
point = point[0]
start = segments[:, :2]
end = segments[:, 2:]
diff = start - end
a = diff[:, 1]
b = -diff[:, 0]
c = a * start[:, 0] + b * start[:, 1]
d = np.abs(a * point[0] + b * point[1] - c) / np.sqrt(a ** 2 + b ** 2 + 1e-10)
theta = np.arctan2(diff[:, 0], diff[:, 1]) * 180 / np.pi
theta[theta < 0.0] += 180
hough = np.concatenate([d[:, None], theta[:, None]], axis=-1)
d_quant = 1
theta_quant = 2
hough[:, 0] //= d_quant
hough[:, 1] //= theta_quant
_, indices, counts = np.unique(hough, axis=0, return_index=True, return_counts=True)
acc_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='float32')
idx_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='int32') - 1
yx_indices = hough[indices, :].astype('int32')
acc_map[yx_indices[:, 0], yx_indices[:, 1]] = counts
idx_map[yx_indices[:, 0], yx_indices[:, 1]] = indices
acc_map_np = acc_map
# acc_map = acc_map[None, :, :, None]
#
# ### fast suppression using tensorflow op
# acc_map = tf.constant(acc_map, dtype=tf.float32)
# max_acc_map = tf.keras.layers.MaxPool2D(pool_size=(5, 5), strides=1, padding='same')(acc_map)
# acc_map = acc_map * tf.cast(tf.math.equal(acc_map, max_acc_map), tf.float32)
# flatten_acc_map = tf.reshape(acc_map, [1, -1])
# topk_values, topk_indices = tf.math.top_k(flatten_acc_map, k=len(pts))
# _, h, w, _ = acc_map.shape
# y = tf.expand_dims(topk_indices // w, axis=-1)
# x = tf.expand_dims(topk_indices % w, axis=-1)
# yx = tf.concat([y, x], axis=-1)
### fast suppression using pytorch op
acc_map = torch.from_numpy(acc_map_np).unsqueeze(0).unsqueeze(0)
_,_, h, w = acc_map.shape
max_acc_map = F.max_pool2d(acc_map,kernel_size=5, stride=1, padding=2)
acc_map = acc_map * ( (acc_map == max_acc_map).float() )
flatten_acc_map = acc_map.reshape([-1, ])
scores, indices = torch.topk(flatten_acc_map, len(pts), dim=-1, largest=True)
yy = torch.div(indices, w, rounding_mode='floor').unsqueeze(-1)
xx = torch.fmod(indices, w).unsqueeze(-1)
yx = torch.cat((yy, xx), dim=-1)
yx = yx.detach().cpu().numpy()
topk_values = scores.detach().cpu().numpy()
indices = idx_map[yx[:, 0], yx[:, 1]]
basis = 5 // 2
merged_segments = []
for yx_pt, max_indice, value in zip(yx, indices, topk_values):
y, x = yx_pt
if max_indice == -1 or value == 0:
continue
segment_list = []
for y_offset in range(-basis, basis + 1):
for x_offset in range(-basis, basis + 1):
indice = idx_map[y + y_offset, x + x_offset]
cnt = int(acc_map_np[y + y_offset, x + x_offset])
if indice != -1:
segment_list.append(segments[indice])
if cnt > 1:
check_cnt = 1
current_hough = hough[indice]
for new_indice, new_hough in enumerate(hough):
if (current_hough == new_hough).all() and indice != new_indice:
segment_list.append(segments[new_indice])
check_cnt += 1
if check_cnt == cnt:
break
group_segments = np.array(segment_list).reshape([-1, 2])
sorted_group_segments = np.sort(group_segments, axis=0)
x_min, y_min = sorted_group_segments[0, :]
x_max, y_max = sorted_group_segments[-1, :]
deg = theta[max_indice]
if deg >= 90:
merged_segments.append([x_min, y_max, x_max, y_min])
else:
merged_segments.append([x_min, y_min, x_max, y_max])
# 2. get intersections
new_segments = np.array(merged_segments) # (x1, y1, x2, y2)
start = new_segments[:, :2] # (x1, y1)
end = new_segments[:, 2:] # (x2, y2)
new_centers = (start + end) / 2.0
diff = start - end
dist_segments = np.sqrt(np.sum(diff ** 2, axis=-1))
# ax + by = c
a = diff[:, 1]
b = -diff[:, 0]
c = a * start[:, 0] + b * start[:, 1]
pre_det = a[:, None] * b[None, :]
det = pre_det - np.transpose(pre_det)
pre_inter_y = a[:, None] * c[None, :]
inter_y = (pre_inter_y - np.transpose(pre_inter_y)) / (det + 1e-10)
pre_inter_x = c[:, None] * b[None, :]
inter_x = (pre_inter_x - np.transpose(pre_inter_x)) / (det + 1e-10)
inter_pts = np.concatenate([inter_x[:, :, None], inter_y[:, :, None]], axis=-1).astype('int32')
# 3. get corner information
# 3.1 get distance
'''
dist_segments:
| dist(0), dist(1), dist(2), ...|
dist_inter_to_segment1:
| dist(inter,0), dist(inter,0), dist(inter,0), ... |
| dist(inter,1), dist(inter,1), dist(inter,1), ... |
...
dist_inter_to_semgnet2:
| dist(inter,0), dist(inter,1), dist(inter,2), ... |
| dist(inter,0), dist(inter,1), dist(inter,2), ... |
...
'''
dist_inter_to_segment1_start = np.sqrt(
np.sum(((inter_pts - start[:, None, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
dist_inter_to_segment1_end = np.sqrt(
np.sum(((inter_pts - end[:, None, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
dist_inter_to_segment2_start = np.sqrt(
np.sum(((inter_pts - start[None, :, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
dist_inter_to_segment2_end = np.sqrt(
np.sum(((inter_pts - end[None, :, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
# sort ascending
dist_inter_to_segment1 = np.sort(
np.concatenate([dist_inter_to_segment1_start, dist_inter_to_segment1_end], axis=-1),
axis=-1) # [n_batch, n_batch, 2]
dist_inter_to_segment2 = np.sort(
np.concatenate([dist_inter_to_segment2_start, dist_inter_to_segment2_end], axis=-1),
axis=-1) # [n_batch, n_batch, 2]
# 3.2 get degree
inter_to_start = new_centers[:, None, :] - inter_pts
deg_inter_to_start = np.arctan2(inter_to_start[:, :, 1], inter_to_start[:, :, 0]) * 180 / np.pi
deg_inter_to_start[deg_inter_to_start < 0.0] += 360
inter_to_end = new_centers[None, :, :] - inter_pts
deg_inter_to_end = np.arctan2(inter_to_end[:, :, 1], inter_to_end[:, :, 0]) * 180 / np.pi
deg_inter_to_end[deg_inter_to_end < 0.0] += 360
'''
B -- G
| |
C -- R
B : blue / G: green / C: cyan / R: red
0 -- 1
| |
3 -- 2
'''
# rename variables
deg1_map, deg2_map = deg_inter_to_start, deg_inter_to_end
# sort deg ascending
deg_sort = np.sort(np.concatenate([deg1_map[:, :, None], deg2_map[:, :, None]], axis=-1), axis=-1)
deg_diff_map = np.abs(deg1_map - deg2_map)
# we only consider the smallest degree of intersect
deg_diff_map[deg_diff_map > 180] = 360 - deg_diff_map[deg_diff_map > 180]
# define available degree range
deg_range = [60, 120]
corner_dict = {corner_info: [] for corner_info in range(4)}
inter_points = []
for i in range(inter_pts.shape[0]):
for j in range(i + 1, inter_pts.shape[1]):
# i, j > line index, always i < j
x, y = inter_pts[i, j, :]
deg1, deg2 = deg_sort[i, j, :]
deg_diff = deg_diff_map[i, j]
check_degree = deg_diff > deg_range[0] and deg_diff < deg_range[1]
outside_ratio = params['outside_ratio'] # over ratio >>> drop it!
inside_ratio = params['inside_ratio'] # over ratio >>> drop it!
check_distance = ((dist_inter_to_segment1[i, j, 1] >= dist_segments[i] and \
dist_inter_to_segment1[i, j, 0] <= dist_segments[i] * outside_ratio) or \
(dist_inter_to_segment1[i, j, 1] <= dist_segments[i] and \
dist_inter_to_segment1[i, j, 0] <= dist_segments[i] * inside_ratio)) and \
((dist_inter_to_segment2[i, j, 1] >= dist_segments[j] and \
dist_inter_to_segment2[i, j, 0] <= dist_segments[j] * outside_ratio) or \
(dist_inter_to_segment2[i, j, 1] <= dist_segments[j] and \
dist_inter_to_segment2[i, j, 0] <= dist_segments[j] * inside_ratio))
if check_degree and check_distance:
corner_info = None
if (deg1 >= 0 and deg1 <= 45 and deg2 >= 45 and deg2 <= 120) or \
(deg2 >= 315 and deg1 >= 45 and deg1 <= 120):
corner_info, color_info = 0, 'blue'
elif (deg1 >= 45 and deg1 <= 125 and deg2 >= 125 and deg2 <= 225):
corner_info, color_info = 1, 'green'
elif (deg1 >= 125 and deg1 <= 225 and deg2 >= 225 and deg2 <= 315):
corner_info, color_info = 2, 'black'
elif (deg1 >= 0 and deg1 <= 45 and deg2 >= 225 and deg2 <= 315) or \
(deg2 >= 315 and deg1 >= 225 and deg1 <= 315):
corner_info, color_info = 3, 'cyan'
else:
corner_info, color_info = 4, 'red' # we don't use it
continue
corner_dict[corner_info].append([x, y, i, j])
inter_points.append([x, y])
square_list = []
connect_list = []
segments_list = []
for corner0 in corner_dict[0]:
for corner1 in corner_dict[1]:
connect01 = False
for corner0_line in corner0[2:]:
if corner0_line in corner1[2:]:
connect01 = True
break
if connect01:
for corner2 in corner_dict[2]:
connect12 = False
for corner1_line in corner1[2:]:
if corner1_line in corner2[2:]:
connect12 = True
break
if connect12:
for corner3 in corner_dict[3]:
connect23 = False
for corner2_line in corner2[2:]:
if corner2_line in corner3[2:]:
connect23 = True
break
if connect23:
for corner3_line in corner3[2:]:
if corner3_line in corner0[2:]:
# SQUARE!!!
'''
0 -- 1
| |
3 -- 2
square_list:
order: 0 > 1 > 2 > 3
| x0, y0, x1, y1, x2, y2, x3, y3 |
| x0, y0, x1, y1, x2, y2, x3, y3 |
...
connect_list:
order: 01 > 12 > 23 > 30
| line_idx01, line_idx12, line_idx23, line_idx30 |
| line_idx01, line_idx12, line_idx23, line_idx30 |
...
segments_list:
order: 0 > 1 > 2 > 3
| line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j |
| line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j |
...
'''
square_list.append(corner0[:2] + corner1[:2] + corner2[:2] + corner3[:2])
connect_list.append([corner0_line, corner1_line, corner2_line, corner3_line])
segments_list.append(corner0[2:] + corner1[2:] + corner2[2:] + corner3[2:])
def check_outside_inside(segments_info, connect_idx):
# return 'outside or inside', min distance, cover_param, peri_param
if connect_idx == segments_info[0]:
check_dist_mat = dist_inter_to_segment1
else:
check_dist_mat = dist_inter_to_segment2
i, j = segments_info
min_dist, max_dist = check_dist_mat[i, j, :]
connect_dist = dist_segments[connect_idx]
if max_dist > connect_dist:
return 'outside', min_dist, 0, 1
else:
return 'inside', min_dist, -1, -1
top_square = None
try:
map_size = input_shape[0] / 2
squares = np.array(square_list).reshape([-1, 4, 2])
score_array = []
connect_array = np.array(connect_list)
segments_array = np.array(segments_list).reshape([-1, 4, 2])
# get degree of corners:
squares_rollup = np.roll(squares, 1, axis=1)
squares_rolldown = np.roll(squares, -1, axis=1)
vec1 = squares_rollup - squares
normalized_vec1 = vec1 / (np.linalg.norm(vec1, axis=-1, keepdims=True) + 1e-10)
vec2 = squares_rolldown - squares
normalized_vec2 = vec2 / (np.linalg.norm(vec2, axis=-1, keepdims=True) + 1e-10)
inner_products = np.sum(normalized_vec1 * normalized_vec2, axis=-1) # [n_squares, 4]
squares_degree = np.arccos(inner_products) * 180 / np.pi # [n_squares, 4]
# get square score
overlap_scores = []
degree_scores = []
length_scores = []
for connects, segments, square, degree in zip(connect_array, segments_array, squares, squares_degree):
'''
0 -- 1
| |
3 -- 2
# segments: [4, 2]
# connects: [4]
'''
###################################### OVERLAP SCORES
cover = 0
perimeter = 0
# check 0 > 1 > 2 > 3
square_length = []
for start_idx in range(4):
end_idx = (start_idx + 1) % 4
connect_idx = connects[start_idx] # segment idx of segment01
start_segments = segments[start_idx]
end_segments = segments[end_idx]
start_point = square[start_idx]
end_point = square[end_idx]
# check whether outside or inside
start_position, start_min, start_cover_param, start_peri_param = check_outside_inside(start_segments,
connect_idx)
end_position, end_min, end_cover_param, end_peri_param = check_outside_inside(end_segments, connect_idx)
cover += dist_segments[connect_idx] + start_cover_param * start_min + end_cover_param * end_min
perimeter += dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min
square_length.append(
dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min)
overlap_scores.append(cover / perimeter)
######################################
###################################### DEGREE SCORES
'''
deg0 vs deg2
deg1 vs deg3
'''
deg0, deg1, deg2, deg3 = degree
deg_ratio1 = deg0 / deg2
if deg_ratio1 > 1.0:
deg_ratio1 = 1 / deg_ratio1
deg_ratio2 = deg1 / deg3
if deg_ratio2 > 1.0:
deg_ratio2 = 1 / deg_ratio2
degree_scores.append((deg_ratio1 + deg_ratio2) / 2)
######################################
###################################### LENGTH SCORES
'''
len0 vs len2
len1 vs len3
'''
len0, len1, len2, len3 = square_length
len_ratio1 = len0 / len2 if len2 > len0 else len2 / len0
len_ratio2 = len1 / len3 if len3 > len1 else len3 / len1
length_scores.append((len_ratio1 + len_ratio2) / 2)
######################################
overlap_scores = np.array(overlap_scores)
overlap_scores /= np.max(overlap_scores)
degree_scores = np.array(degree_scores)
# degree_scores /= np.max(degree_scores)
length_scores = np.array(length_scores)
###################################### AREA SCORES
area_scores = np.reshape(squares, [-1, 4, 2])
area_x = area_scores[:, :, 0]
area_y = area_scores[:, :, 1]
correction = area_x[:, -1] * area_y[:, 0] - area_y[:, -1] * area_x[:, 0]
area_scores = np.sum(area_x[:, :-1] * area_y[:, 1:], axis=-1) - np.sum(area_y[:, :-1] * area_x[:, 1:], axis=-1)
area_scores = 0.5 * np.abs(area_scores + correction)
area_scores /= (map_size * map_size) # np.max(area_scores)
######################################
###################################### CENTER SCORES
centers = np.array([[256 // 2, 256 // 2]], dtype='float32') # [1, 2]
# squares: [n, 4, 2]
square_centers = np.mean(squares, axis=1) # [n, 2]
center2center = np.sqrt(np.sum((centers - square_centers) ** 2))
center_scores = center2center / (map_size / np.sqrt(2.0))
'''
score_w = [overlap, degree, area, center, length]
'''
score_w = [0.0, 1.0, 10.0, 0.5, 1.0]
score_array = params['w_overlap'] * overlap_scores \
+ params['w_degree'] * degree_scores \
+ params['w_area'] * area_scores \
- params['w_center'] * center_scores \
+ params['w_length'] * length_scores
best_square = []
sorted_idx = np.argsort(score_array)[::-1]
score_array = score_array[sorted_idx]
squares = squares[sorted_idx]
except Exception as e:
pass
'''return list
merged_lines, squares, scores
'''
try:
new_segments[:, 0] = new_segments[:, 0] * 2 / input_shape[1] * original_shape[1]
new_segments[:, 1] = new_segments[:, 1] * 2 / input_shape[0] * original_shape[0]
new_segments[:, 2] = new_segments[:, 2] * 2 / input_shape[1] * original_shape[1]
new_segments[:, 3] = new_segments[:, 3] * 2 / input_shape[0] * original_shape[0]
except:
new_segments = []
try:
squares[:, :, 0] = squares[:, :, 0] * 2 / input_shape[1] * original_shape[1]
squares[:, :, 1] = squares[:, :, 1] * 2 / input_shape[0] * original_shape[0]
except:
squares = []
score_array = []
try:
inter_points = np.array(inter_points)
inter_points[:, 0] = inter_points[:, 0] * 2 / input_shape[1] * original_shape[1]
inter_points[:, 1] = inter_points[:, 1] * 2 / input_shape[0] * original_shape[0]
except:
inter_points = []
return new_segments, squares, score_array, inter_points

View File

@ -0,0 +1,15 @@
# Copyright (c) OpenMMLab. All rights reserved.
# flake8: noqa
from .arraymisc import *
from .fileio import *
from .image import *
from .utils import *
from .version import *
from .video import *
from .visualization import *
# The following modules are not imported to this level, so mmcv may be used
# without PyTorch.
# - runner
# - parallel
# - op

View File

@ -0,0 +1,4 @@
# Copyright (c) OpenMMLab. All rights reserved.
from .quantization import dequantize, quantize
__all__ = ['quantize', 'dequantize']

View File

@ -0,0 +1,55 @@
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
def quantize(arr, min_val, max_val, levels, dtype=np.int64):
"""Quantize an array of (-inf, inf) to [0, levels-1].
Args:
arr (ndarray): Input array.
min_val (scalar): Minimum value to be clipped.
max_val (scalar): Maximum value to be clipped.
levels (int): Quantization levels.
dtype (np.type): The type of the quantized array.
Returns:
tuple: Quantized array.
"""
if not (isinstance(levels, int) and levels > 1):
raise ValueError(
f'levels must be a positive integer, but got {levels}')
if min_val >= max_val:
raise ValueError(
f'min_val ({min_val}) must be smaller than max_val ({max_val})')
arr = np.clip(arr, min_val, max_val) - min_val
quantized_arr = np.minimum(
np.floor(levels * arr / (max_val - min_val)).astype(dtype), levels - 1)
return quantized_arr
def dequantize(arr, min_val, max_val, levels, dtype=np.float64):
"""Dequantize an array.
Args:
arr (ndarray): Input array.
min_val (scalar): Minimum value to be clipped.
max_val (scalar): Maximum value to be clipped.
levels (int): Quantization levels.
dtype (np.type): The type of the dequantized array.
Returns:
tuple: Dequantized array.
"""
if not (isinstance(levels, int) and levels > 1):
raise ValueError(
f'levels must be a positive integer, but got {levels}')
if min_val >= max_val:
raise ValueError(
f'min_val ({min_val}) must be smaller than max_val ({max_val})')
dequantized_arr = (arr + 0.5).astype(dtype) * (max_val -
min_val) / levels + min_val
return dequantized_arr

View File

@ -0,0 +1,41 @@
# Copyright (c) OpenMMLab. All rights reserved.
from .alexnet import AlexNet
# yapf: disable
from .bricks import (ACTIVATION_LAYERS, CONV_LAYERS, NORM_LAYERS,
PADDING_LAYERS, PLUGIN_LAYERS, UPSAMPLE_LAYERS,
ContextBlock, Conv2d, Conv3d, ConvAWS2d, ConvModule,
ConvTranspose2d, ConvTranspose3d, ConvWS2d,
DepthwiseSeparableConvModule, GeneralizedAttention,
HSigmoid, HSwish, Linear, MaxPool2d, MaxPool3d,
NonLocal1d, NonLocal2d, NonLocal3d, Scale, Swish,
build_activation_layer, build_conv_layer,
build_norm_layer, build_padding_layer, build_plugin_layer,
build_upsample_layer, conv_ws_2d, is_norm)
from .builder import MODELS, build_model_from_cfg
# yapf: enable
from .resnet import ResNet, make_res_layer
from .utils import (INITIALIZERS, Caffe2XavierInit, ConstantInit, KaimingInit,
NormalInit, PretrainedInit, TruncNormalInit, UniformInit,
XavierInit, bias_init_with_prob, caffe2_xavier_init,
constant_init, fuse_conv_bn, get_model_complexity_info,
initialize, kaiming_init, normal_init, trunc_normal_init,
uniform_init, xavier_init)
from .vgg import VGG, make_vgg_layer
__all__ = [
'AlexNet', 'VGG', 'make_vgg_layer', 'ResNet', 'make_res_layer',
'constant_init', 'xavier_init', 'normal_init', 'trunc_normal_init',
'uniform_init', 'kaiming_init', 'caffe2_xavier_init',
'bias_init_with_prob', 'ConvModule', 'build_activation_layer',
'build_conv_layer', 'build_norm_layer', 'build_padding_layer',
'build_upsample_layer', 'build_plugin_layer', 'is_norm', 'NonLocal1d',
'NonLocal2d', 'NonLocal3d', 'ContextBlock', 'HSigmoid', 'Swish', 'HSwish',
'GeneralizedAttention', 'ACTIVATION_LAYERS', 'CONV_LAYERS', 'NORM_LAYERS',
'PADDING_LAYERS', 'UPSAMPLE_LAYERS', 'PLUGIN_LAYERS', 'Scale',
'get_model_complexity_info', 'conv_ws_2d', 'ConvAWS2d', 'ConvWS2d',
'fuse_conv_bn', 'DepthwiseSeparableConvModule', 'Linear', 'Conv2d',
'ConvTranspose2d', 'MaxPool2d', 'ConvTranspose3d', 'MaxPool3d', 'Conv3d',
'initialize', 'INITIALIZERS', 'ConstantInit', 'XavierInit', 'NormalInit',
'TruncNormalInit', 'UniformInit', 'KaimingInit', 'PretrainedInit',
'Caffe2XavierInit', 'MODELS', 'build_model_from_cfg'
]

View File

@ -0,0 +1,61 @@
# Copyright (c) OpenMMLab. All rights reserved.
import logging
import torch.nn as nn
class AlexNet(nn.Module):
"""AlexNet backbone.
Args:
num_classes (int): number of classes for classification.
"""
def __init__(self, num_classes=-1):
super(AlexNet, self).__init__()
self.num_classes = num_classes
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(64, 192, kernel_size=5, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(192, 384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
)
if self.num_classes > 0:
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(256 * 6 * 6, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, num_classes),
)
def init_weights(self, pretrained=None):
if isinstance(pretrained, str):
logger = logging.getLogger()
from ..runner import load_checkpoint
load_checkpoint(self, pretrained, strict=False, logger=logger)
elif pretrained is None:
# use default initializer
pass
else:
raise TypeError('pretrained must be a str or None')
def forward(self, x):
x = self.features(x)
if self.num_classes > 0:
x = x.view(x.size(0), 256 * 6 * 6)
x = self.classifier(x)
return x

View File

@ -0,0 +1,35 @@
# Copyright (c) OpenMMLab. All rights reserved.
from .activation import build_activation_layer
from .context_block import ContextBlock
from .conv import build_conv_layer
from .conv2d_adaptive_padding import Conv2dAdaptivePadding
from .conv_module import ConvModule
from .conv_ws import ConvAWS2d, ConvWS2d, conv_ws_2d
from .depthwise_separable_conv_module import DepthwiseSeparableConvModule
from .drop import Dropout, DropPath
from .generalized_attention import GeneralizedAttention
from .hsigmoid import HSigmoid
from .hswish import HSwish
from .non_local import NonLocal1d, NonLocal2d, NonLocal3d
from .norm import build_norm_layer, is_norm
from .padding import build_padding_layer
from .plugin import build_plugin_layer
from .registry import (ACTIVATION_LAYERS, CONV_LAYERS, NORM_LAYERS,
PADDING_LAYERS, PLUGIN_LAYERS, UPSAMPLE_LAYERS)
from .scale import Scale
from .swish import Swish
from .upsample import build_upsample_layer
from .wrappers import (Conv2d, Conv3d, ConvTranspose2d, ConvTranspose3d,
Linear, MaxPool2d, MaxPool3d)
__all__ = [
'ConvModule', 'build_activation_layer', 'build_conv_layer',
'build_norm_layer', 'build_padding_layer', 'build_upsample_layer',
'build_plugin_layer', 'is_norm', 'HSigmoid', 'HSwish', 'NonLocal1d',
'NonLocal2d', 'NonLocal3d', 'ContextBlock', 'GeneralizedAttention',
'ACTIVATION_LAYERS', 'CONV_LAYERS', 'NORM_LAYERS', 'PADDING_LAYERS',
'UPSAMPLE_LAYERS', 'PLUGIN_LAYERS', 'Scale', 'ConvAWS2d', 'ConvWS2d',
'conv_ws_2d', 'DepthwiseSeparableConvModule', 'Swish', 'Linear',
'Conv2dAdaptivePadding', 'Conv2d', 'ConvTranspose2d', 'MaxPool2d',
'ConvTranspose3d', 'MaxPool3d', 'Conv3d', 'Dropout', 'DropPath'
]

View File

@ -0,0 +1,92 @@
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
import torch.nn.functional as F
from annotator.mmpkg.mmcv.utils import TORCH_VERSION, build_from_cfg, digit_version
from .registry import ACTIVATION_LAYERS
for module in [
nn.ReLU, nn.LeakyReLU, nn.PReLU, nn.RReLU, nn.ReLU6, nn.ELU,
nn.Sigmoid, nn.Tanh
]:
ACTIVATION_LAYERS.register_module(module=module)
@ACTIVATION_LAYERS.register_module(name='Clip')
@ACTIVATION_LAYERS.register_module()
class Clamp(nn.Module):
"""Clamp activation layer.
This activation function is to clamp the feature map value within
:math:`[min, max]`. More details can be found in ``torch.clamp()``.
Args:
min (Number | optional): Lower-bound of the range to be clamped to.
Default to -1.
max (Number | optional): Upper-bound of the range to be clamped to.
Default to 1.
"""
def __init__(self, min=-1., max=1.):
super(Clamp, self).__init__()
self.min = min
self.max = max
def forward(self, x):
"""Forward function.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: Clamped tensor.
"""
return torch.clamp(x, min=self.min, max=self.max)
class GELU(nn.Module):
r"""Applies the Gaussian Error Linear Units function:
.. math::
\text{GELU}(x) = x * \Phi(x)
where :math:`\Phi(x)` is the Cumulative Distribution Function for
Gaussian Distribution.
Shape:
- Input: :math:`(N, *)` where `*` means, any number of additional
dimensions
- Output: :math:`(N, *)`, same shape as the input
.. image:: scripts/activation_images/GELU.png
Examples::
>>> m = nn.GELU()
>>> input = torch.randn(2)
>>> output = m(input)
"""
def forward(self, input):
return F.gelu(input)
if (TORCH_VERSION == 'parrots'
or digit_version(TORCH_VERSION) < digit_version('1.4')):
ACTIVATION_LAYERS.register_module(module=GELU)
else:
ACTIVATION_LAYERS.register_module(module=nn.GELU)
def build_activation_layer(cfg):
"""Build activation layer.
Args:
cfg (dict): The activation layer config, which should contain:
- type (str): Layer type.
- layer args: Args needed to instantiate an activation layer.
Returns:
nn.Module: Created activation layer.
"""
return build_from_cfg(cfg, ACTIVATION_LAYERS)

View File

@ -0,0 +1,125 @@
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from torch import nn
from ..utils import constant_init, kaiming_init
from .registry import PLUGIN_LAYERS
def last_zero_init(m):
if isinstance(m, nn.Sequential):
constant_init(m[-1], val=0)
else:
constant_init(m, val=0)
@PLUGIN_LAYERS.register_module()
class ContextBlock(nn.Module):
"""ContextBlock module in GCNet.
See 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond'
(https://arxiv.org/abs/1904.11492) for details.
Args:
in_channels (int): Channels of the input feature map.
ratio (float): Ratio of channels of transform bottleneck
pooling_type (str): Pooling method for context modeling.
Options are 'att' and 'avg', stand for attention pooling and
average pooling respectively. Default: 'att'.
fusion_types (Sequence[str]): Fusion method for feature fusion,
Options are 'channels_add', 'channel_mul', stand for channelwise
addition and multiplication respectively. Default: ('channel_add',)
"""
_abbr_ = 'context_block'
def __init__(self,
in_channels,
ratio,
pooling_type='att',
fusion_types=('channel_add', )):
super(ContextBlock, self).__init__()
assert pooling_type in ['avg', 'att']
assert isinstance(fusion_types, (list, tuple))
valid_fusion_types = ['channel_add', 'channel_mul']
assert all([f in valid_fusion_types for f in fusion_types])
assert len(fusion_types) > 0, 'at least one fusion should be used'
self.in_channels = in_channels
self.ratio = ratio
self.planes = int(in_channels * ratio)
self.pooling_type = pooling_type
self.fusion_types = fusion_types
if pooling_type == 'att':
self.conv_mask = nn.Conv2d(in_channels, 1, kernel_size=1)
self.softmax = nn.Softmax(dim=2)
else:
self.avg_pool = nn.AdaptiveAvgPool2d(1)
if 'channel_add' in fusion_types:
self.channel_add_conv = nn.Sequential(
nn.Conv2d(self.in_channels, self.planes, kernel_size=1),
nn.LayerNorm([self.planes, 1, 1]),
nn.ReLU(inplace=True), # yapf: disable
nn.Conv2d(self.planes, self.in_channels, kernel_size=1))
else:
self.channel_add_conv = None
if 'channel_mul' in fusion_types:
self.channel_mul_conv = nn.Sequential(
nn.Conv2d(self.in_channels, self.planes, kernel_size=1),
nn.LayerNorm([self.planes, 1, 1]),
nn.ReLU(inplace=True), # yapf: disable
nn.Conv2d(self.planes, self.in_channels, kernel_size=1))
else:
self.channel_mul_conv = None
self.reset_parameters()
def reset_parameters(self):
if self.pooling_type == 'att':
kaiming_init(self.conv_mask, mode='fan_in')
self.conv_mask.inited = True
if self.channel_add_conv is not None:
last_zero_init(self.channel_add_conv)
if self.channel_mul_conv is not None:
last_zero_init(self.channel_mul_conv)
def spatial_pool(self, x):
batch, channel, height, width = x.size()
if self.pooling_type == 'att':
input_x = x
# [N, C, H * W]
input_x = input_x.view(batch, channel, height * width)
# [N, 1, C, H * W]
input_x = input_x.unsqueeze(1)
# [N, 1, H, W]
context_mask = self.conv_mask(x)
# [N, 1, H * W]
context_mask = context_mask.view(batch, 1, height * width)
# [N, 1, H * W]
context_mask = self.softmax(context_mask)
# [N, 1, H * W, 1]
context_mask = context_mask.unsqueeze(-1)
# [N, 1, C, 1]
context = torch.matmul(input_x, context_mask)
# [N, C, 1, 1]
context = context.view(batch, channel, 1, 1)
else:
# [N, C, 1, 1]
context = self.avg_pool(x)
return context
def forward(self, x):
# [N, C, 1, 1]
context = self.spatial_pool(x)
out = x
if self.channel_mul_conv is not None:
# [N, C, 1, 1]
channel_mul_term = torch.sigmoid(self.channel_mul_conv(context))
out = out * channel_mul_term
if self.channel_add_conv is not None:
# [N, C, 1, 1]
channel_add_term = self.channel_add_conv(context)
out = out + channel_add_term
return out

View File

@ -0,0 +1,44 @@
# Copyright (c) OpenMMLab. All rights reserved.
from torch import nn
from .registry import CONV_LAYERS
CONV_LAYERS.register_module('Conv1d', module=nn.Conv1d)
CONV_LAYERS.register_module('Conv2d', module=nn.Conv2d)
CONV_LAYERS.register_module('Conv3d', module=nn.Conv3d)
CONV_LAYERS.register_module('Conv', module=nn.Conv2d)
def build_conv_layer(cfg, *args, **kwargs):
"""Build convolution layer.
Args:
cfg (None or dict): The conv layer config, which should contain:
- type (str): Layer type.
- layer args: Args needed to instantiate an conv layer.
args (argument list): Arguments passed to the `__init__`
method of the corresponding conv layer.
kwargs (keyword arguments): Keyword arguments passed to the `__init__`
method of the corresponding conv layer.
Returns:
nn.Module: Created conv layer.
"""
if cfg is None:
cfg_ = dict(type='Conv2d')
else:
if not isinstance(cfg, dict):
raise TypeError('cfg must be a dict')
if 'type' not in cfg:
raise KeyError('the cfg dict must contain the key "type"')
cfg_ = cfg.copy()
layer_type = cfg_.pop('type')
if layer_type not in CONV_LAYERS:
raise KeyError(f'Unrecognized norm type {layer_type}')
else:
conv_layer = CONV_LAYERS.get(layer_type)
layer = conv_layer(*args, **kwargs, **cfg_)
return layer

View File

@ -0,0 +1,62 @@
# Copyright (c) OpenMMLab. All rights reserved.
import math
from torch import nn
from torch.nn import functional as F
from .registry import CONV_LAYERS
@CONV_LAYERS.register_module()
class Conv2dAdaptivePadding(nn.Conv2d):
"""Implementation of 2D convolution in tensorflow with `padding` as "same",
which applies padding to input (if needed) so that input image gets fully
covered by filter and stride you specified. For stride 1, this will ensure
that output image size is same as input. For stride of 2, output dimensions
will be half, for example.
Args:
in_channels (int): Number of channels in the input image
out_channels (int): Number of channels produced by the convolution
kernel_size (int or tuple): Size of the convolving kernel
stride (int or tuple, optional): Stride of the convolution. Default: 1
padding (int or tuple, optional): Zero-padding added to both sides of
the input. Default: 0
dilation (int or tuple, optional): Spacing between kernel elements.
Default: 1
groups (int, optional): Number of blocked connections from input
channels to output channels. Default: 1
bias (bool, optional): If ``True``, adds a learnable bias to the
output. Default: ``True``
"""
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True):
super().__init__(in_channels, out_channels, kernel_size, stride, 0,
dilation, groups, bias)
def forward(self, x):
img_h, img_w = x.size()[-2:]
kernel_h, kernel_w = self.weight.size()[-2:]
stride_h, stride_w = self.stride
output_h = math.ceil(img_h / stride_h)
output_w = math.ceil(img_w / stride_w)
pad_h = (
max((output_h - 1) * self.stride[0] +
(kernel_h - 1) * self.dilation[0] + 1 - img_h, 0))
pad_w = (
max((output_w - 1) * self.stride[1] +
(kernel_w - 1) * self.dilation[1] + 1 - img_w, 0))
if pad_h > 0 or pad_w > 0:
x = F.pad(x, [
pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2
])
return F.conv2d(x, self.weight, self.bias, self.stride, self.padding,
self.dilation, self.groups)

View File

@ -0,0 +1,206 @@
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
import torch.nn as nn
from annotator.mmpkg.mmcv.utils import _BatchNorm, _InstanceNorm
from ..utils import constant_init, kaiming_init
from .activation import build_activation_layer
from .conv import build_conv_layer
from .norm import build_norm_layer
from .padding import build_padding_layer
from .registry import PLUGIN_LAYERS
@PLUGIN_LAYERS.register_module()
class ConvModule(nn.Module):
"""A conv block that bundles conv/norm/activation layers.
This block simplifies the usage of convolution layers, which are commonly
used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU).
It is based upon three build methods: `build_conv_layer()`,
`build_norm_layer()` and `build_activation_layer()`.
Besides, we add some additional features in this module.
1. Automatically set `bias` of the conv layer.
2. Spectral norm is supported.
3. More padding modes are supported. Before PyTorch 1.5, nn.Conv2d only
supports zero and circular padding, and we add "reflect" padding mode.
Args:
in_channels (int): Number of channels in the input feature map.
Same as that in ``nn._ConvNd``.
out_channels (int): Number of channels produced by the convolution.
Same as that in ``nn._ConvNd``.
kernel_size (int | tuple[int]): Size of the convolving kernel.
Same as that in ``nn._ConvNd``.
stride (int | tuple[int]): Stride of the convolution.
Same as that in ``nn._ConvNd``.
padding (int | tuple[int]): Zero-padding added to both sides of
the input. Same as that in ``nn._ConvNd``.
dilation (int | tuple[int]): Spacing between kernel elements.
Same as that in ``nn._ConvNd``.
groups (int): Number of blocked connections from input channels to
output channels. Same as that in ``nn._ConvNd``.
bias (bool | str): If specified as `auto`, it will be decided by the
norm_cfg. Bias will be set as True if `norm_cfg` is None, otherwise
False. Default: "auto".
conv_cfg (dict): Config dict for convolution layer. Default: None,
which means using conv2d.
norm_cfg (dict): Config dict for normalization layer. Default: None.
act_cfg (dict): Config dict for activation layer.
Default: dict(type='ReLU').
inplace (bool): Whether to use inplace mode for activation.
Default: True.
with_spectral_norm (bool): Whether use spectral norm in conv module.
Default: False.
padding_mode (str): If the `padding_mode` has not been supported by
current `Conv2d` in PyTorch, we will use our own padding layer
instead. Currently, we support ['zeros', 'circular'] with official
implementation and ['reflect'] with our own implementation.
Default: 'zeros'.
order (tuple[str]): The order of conv/norm/activation layers. It is a
sequence of "conv", "norm" and "act". Common examples are
("conv", "norm", "act") and ("act", "conv", "norm").
Default: ('conv', 'norm', 'act').
"""
_abbr_ = 'conv_block'
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias='auto',
conv_cfg=None,
norm_cfg=None,
act_cfg=dict(type='ReLU'),
inplace=True,
with_spectral_norm=False,
padding_mode='zeros',
order=('conv', 'norm', 'act')):
super(ConvModule, self).__init__()
assert conv_cfg is None or isinstance(conv_cfg, dict)
assert norm_cfg is None or isinstance(norm_cfg, dict)
assert act_cfg is None or isinstance(act_cfg, dict)
official_padding_mode = ['zeros', 'circular']
self.conv_cfg = conv_cfg
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.inplace = inplace
self.with_spectral_norm = with_spectral_norm
self.with_explicit_padding = padding_mode not in official_padding_mode
self.order = order
assert isinstance(self.order, tuple) and len(self.order) == 3
assert set(order) == set(['conv', 'norm', 'act'])
self.with_norm = norm_cfg is not None
self.with_activation = act_cfg is not None
# if the conv layer is before a norm layer, bias is unnecessary.
if bias == 'auto':
bias = not self.with_norm
self.with_bias = bias
if self.with_explicit_padding:
pad_cfg = dict(type=padding_mode)
self.padding_layer = build_padding_layer(pad_cfg, padding)
# reset padding to 0 for conv module
conv_padding = 0 if self.with_explicit_padding else padding
# build convolution layer
self.conv = build_conv_layer(
conv_cfg,
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=conv_padding,
dilation=dilation,
groups=groups,
bias=bias)
# export the attributes of self.conv to a higher level for convenience
self.in_channels = self.conv.in_channels
self.out_channels = self.conv.out_channels
self.kernel_size = self.conv.kernel_size
self.stride = self.conv.stride
self.padding = padding
self.dilation = self.conv.dilation
self.transposed = self.conv.transposed
self.output_padding = self.conv.output_padding
self.groups = self.conv.groups
if self.with_spectral_norm:
self.conv = nn.utils.spectral_norm(self.conv)
# build normalization layers
if self.with_norm:
# norm layer is after conv layer
if order.index('norm') > order.index('conv'):
norm_channels = out_channels
else:
norm_channels = in_channels
self.norm_name, norm = build_norm_layer(norm_cfg, norm_channels)
self.add_module(self.norm_name, norm)
if self.with_bias:
if isinstance(norm, (_BatchNorm, _InstanceNorm)):
warnings.warn(
'Unnecessary conv bias before batch/instance norm')
else:
self.norm_name = None
# build activation layer
if self.with_activation:
act_cfg_ = act_cfg.copy()
# nn.Tanh has no 'inplace' argument
if act_cfg_['type'] not in [
'Tanh', 'PReLU', 'Sigmoid', 'HSigmoid', 'Swish'
]:
act_cfg_.setdefault('inplace', inplace)
self.activate = build_activation_layer(act_cfg_)
# Use msra init by default
self.init_weights()
@property
def norm(self):
if self.norm_name:
return getattr(self, self.norm_name)
else:
return None
def init_weights(self):
# 1. It is mainly for customized conv layers with their own
# initialization manners by calling their own ``init_weights()``,
# and we do not want ConvModule to override the initialization.
# 2. For customized conv layers without their own initialization
# manners (that is, they don't have their own ``init_weights()``)
# and PyTorch's conv layers, they will be initialized by
# this method with default ``kaiming_init``.
# Note: For PyTorch's conv layers, they will be overwritten by our
# initialization implementation using default ``kaiming_init``.
if not hasattr(self.conv, 'init_weights'):
if self.with_activation and self.act_cfg['type'] == 'LeakyReLU':
nonlinearity = 'leaky_relu'
a = self.act_cfg.get('negative_slope', 0.01)
else:
nonlinearity = 'relu'
a = 0
kaiming_init(self.conv, a=a, nonlinearity=nonlinearity)
if self.with_norm:
constant_init(self.norm, 1, bias=0)
def forward(self, x, activate=True, norm=True):
for layer in self.order:
if layer == 'conv':
if self.with_explicit_padding:
x = self.padding_layer(x)
x = self.conv(x)
elif layer == 'norm' and norm and self.with_norm:
x = self.norm(x)
elif layer == 'act' and activate and self.with_activation:
x = self.activate(x)
return x

View File

@ -0,0 +1,148 @@
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
import torch.nn.functional as F
from .registry import CONV_LAYERS
def conv_ws_2d(input,
weight,
bias=None,
stride=1,
padding=0,
dilation=1,
groups=1,
eps=1e-5):
c_in = weight.size(0)
weight_flat = weight.view(c_in, -1)
mean = weight_flat.mean(dim=1, keepdim=True).view(c_in, 1, 1, 1)
std = weight_flat.std(dim=1, keepdim=True).view(c_in, 1, 1, 1)
weight = (weight - mean) / (std + eps)
return F.conv2d(input, weight, bias, stride, padding, dilation, groups)
@CONV_LAYERS.register_module('ConvWS')
class ConvWS2d(nn.Conv2d):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
eps=1e-5):
super(ConvWS2d, self).__init__(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias)
self.eps = eps
def forward(self, x):
return conv_ws_2d(x, self.weight, self.bias, self.stride, self.padding,
self.dilation, self.groups, self.eps)
@CONV_LAYERS.register_module(name='ConvAWS')
class ConvAWS2d(nn.Conv2d):
"""AWS (Adaptive Weight Standardization)
This is a variant of Weight Standardization
(https://arxiv.org/pdf/1903.10520.pdf)
It is used in DetectoRS to avoid NaN
(https://arxiv.org/pdf/2006.02334.pdf)
Args:
in_channels (int): Number of channels in the input image
out_channels (int): Number of channels produced by the convolution
kernel_size (int or tuple): Size of the conv kernel
stride (int or tuple, optional): Stride of the convolution. Default: 1
padding (int or tuple, optional): Zero-padding added to both sides of
the input. Default: 0
dilation (int or tuple, optional): Spacing between kernel elements.
Default: 1
groups (int, optional): Number of blocked connections from input
channels to output channels. Default: 1
bias (bool, optional): If set True, adds a learnable bias to the
output. Default: True
"""
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True):
super().__init__(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias)
self.register_buffer('weight_gamma',
torch.ones(self.out_channels, 1, 1, 1))
self.register_buffer('weight_beta',
torch.zeros(self.out_channels, 1, 1, 1))
def _get_weight(self, weight):
weight_flat = weight.view(weight.size(0), -1)
mean = weight_flat.mean(dim=1).view(-1, 1, 1, 1)
std = torch.sqrt(weight_flat.var(dim=1) + 1e-5).view(-1, 1, 1, 1)
weight = (weight - mean) / std
weight = self.weight_gamma * weight + self.weight_beta
return weight
def forward(self, x):
weight = self._get_weight(self.weight)
return F.conv2d(x, weight, self.bias, self.stride, self.padding,
self.dilation, self.groups)
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs):
"""Override default load function.
AWS overrides the function _load_from_state_dict to recover
weight_gamma and weight_beta if they are missing. If weight_gamma and
weight_beta are found in the checkpoint, this function will return
after super()._load_from_state_dict. Otherwise, it will compute the
mean and std of the pretrained weights and store them in weight_beta
and weight_gamma.
"""
self.weight_gamma.data.fill_(-1)
local_missing_keys = []
super()._load_from_state_dict(state_dict, prefix, local_metadata,
strict, local_missing_keys,
unexpected_keys, error_msgs)
if self.weight_gamma.data.mean() > 0:
for k in local_missing_keys:
missing_keys.append(k)
return
weight = self.weight.data
weight_flat = weight.view(weight.size(0), -1)
mean = weight_flat.mean(dim=1).view(-1, 1, 1, 1)
std = torch.sqrt(weight_flat.var(dim=1) + 1e-5).view(-1, 1, 1, 1)
self.weight_beta.data.copy_(mean)
self.weight_gamma.data.copy_(std)
missing_gamma_beta = [
k for k in local_missing_keys
if k.endswith('weight_gamma') or k.endswith('weight_beta')
]
for k in missing_gamma_beta:
local_missing_keys.remove(k)
for k in local_missing_keys:
missing_keys.append(k)

View File

@ -0,0 +1,96 @@
# Copyright (c) OpenMMLab. All rights reserved.
import torch.nn as nn
from .conv_module import ConvModule
class DepthwiseSeparableConvModule(nn.Module):
"""Depthwise separable convolution module.
See https://arxiv.org/pdf/1704.04861.pdf for details.
This module can replace a ConvModule with the conv block replaced by two
conv block: depthwise conv block and pointwise conv block. The depthwise
conv block contains depthwise-conv/norm/activation layers. The pointwise
conv block contains pointwise-conv/norm/activation layers. It should be
noted that there will be norm/activation layer in the depthwise conv block
if `norm_cfg` and `act_cfg` are specified.
Args:
in_channels (int): Number of channels in the input feature map.
Same as that in ``nn._ConvNd``.
out_channels (int): Number of channels produced by the convolution.
Same as that in ``nn._ConvNd``.
kernel_size (int | tuple[int]): Size of the convolving kernel.
Same as that in ``nn._ConvNd``.
stride (int | tuple[int]): Stride of the convolution.
Same as that in ``nn._ConvNd``. Default: 1.
padding (int | tuple[int]): Zero-padding added to both sides of
the input. Same as that in ``nn._ConvNd``. Default: 0.
dilation (int | tuple[int]): Spacing between kernel elements.
Same as that in ``nn._ConvNd``. Default: 1.
norm_cfg (dict): Default norm config for both depthwise ConvModule and
pointwise ConvModule. Default: None.
act_cfg (dict): Default activation config for both depthwise ConvModule
and pointwise ConvModule. Default: dict(type='ReLU').
dw_norm_cfg (dict): Norm config of depthwise ConvModule. If it is
'default', it will be the same as `norm_cfg`. Default: 'default'.
dw_act_cfg (dict): Activation config of depthwise ConvModule. If it is
'default', it will be the same as `act_cfg`. Default: 'default'.
pw_norm_cfg (dict): Norm config of pointwise ConvModule. If it is
'default', it will be the same as `norm_cfg`. Default: 'default'.
pw_act_cfg (dict): Activation config of pointwise ConvModule. If it is
'default', it will be the same as `act_cfg`. Default: 'default'.
kwargs (optional): Other shared arguments for depthwise and pointwise
ConvModule. See ConvModule for ref.
"""
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
norm_cfg=None,
act_cfg=dict(type='ReLU'),
dw_norm_cfg='default',
dw_act_cfg='default',
pw_norm_cfg='default',
pw_act_cfg='default',
**kwargs):
super(DepthwiseSeparableConvModule, self).__init__()
assert 'groups' not in kwargs, 'groups should not be specified'
# if norm/activation config of depthwise/pointwise ConvModule is not
# specified, use default config.
dw_norm_cfg = dw_norm_cfg if dw_norm_cfg != 'default' else norm_cfg
dw_act_cfg = dw_act_cfg if dw_act_cfg != 'default' else act_cfg
pw_norm_cfg = pw_norm_cfg if pw_norm_cfg != 'default' else norm_cfg
pw_act_cfg = pw_act_cfg if pw_act_cfg != 'default' else act_cfg
# depthwise convolution
self.depthwise_conv = ConvModule(
in_channels,
in_channels,
kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=in_channels,
norm_cfg=dw_norm_cfg,
act_cfg=dw_act_cfg,
**kwargs)
self.pointwise_conv = ConvModule(
in_channels,
out_channels,
1,
norm_cfg=pw_norm_cfg,
act_cfg=pw_act_cfg,
**kwargs)
def forward(self, x):
x = self.depthwise_conv(x)
x = self.pointwise_conv(x)
return x

View File

@ -0,0 +1,65 @@
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from annotator.mmpkg.mmcv import build_from_cfg
from .registry import DROPOUT_LAYERS
def drop_path(x, drop_prob=0., training=False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of
residual blocks).
We follow the implementation
https://github.com/rwightman/pytorch-image-models/blob/a2727c1bf78ba0d7b5727f5f95e37fb7f8866b1f/timm/models/layers/drop.py # noqa: E501
"""
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
# handle tensors with different dimensions, not just 4D tensors.
shape = (x.shape[0], ) + (1, ) * (x.ndim - 1)
random_tensor = keep_prob + torch.rand(
shape, dtype=x.dtype, device=x.device)
output = x.div(keep_prob) * random_tensor.floor()
return output
@DROPOUT_LAYERS.register_module()
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of
residual blocks).
We follow the implementation
https://github.com/rwightman/pytorch-image-models/blob/a2727c1bf78ba0d7b5727f5f95e37fb7f8866b1f/timm/models/layers/drop.py # noqa: E501
Args:
drop_prob (float): Probability of the path to be zeroed. Default: 0.1
"""
def __init__(self, drop_prob=0.1):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
@DROPOUT_LAYERS.register_module()
class Dropout(nn.Dropout):
"""A wrapper for ``torch.nn.Dropout``, We rename the ``p`` of
``torch.nn.Dropout`` to ``drop_prob`` so as to be consistent with
``DropPath``
Args:
drop_prob (float): Probability of the elements to be
zeroed. Default: 0.5.
inplace (bool): Do the operation inplace or not. Default: False.
"""
def __init__(self, drop_prob=0.5, inplace=False):
super().__init__(p=drop_prob, inplace=inplace)
def build_dropout(cfg, default_args=None):
"""Builder for drop out layers."""
return build_from_cfg(cfg, DROPOUT_LAYERS, default_args)

View File

@ -0,0 +1,412 @@
# Copyright (c) OpenMMLab. All rights reserved.
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from ..utils import kaiming_init
from .registry import PLUGIN_LAYERS
@PLUGIN_LAYERS.register_module()
class GeneralizedAttention(nn.Module):
"""GeneralizedAttention module.
See 'An Empirical Study of Spatial Attention Mechanisms in Deep Networks'
(https://arxiv.org/abs/1711.07971) for details.
Args:
in_channels (int): Channels of the input feature map.
spatial_range (int): The spatial range. -1 indicates no spatial range
constraint. Default: -1.
num_heads (int): The head number of empirical_attention module.
Default: 9.
position_embedding_dim (int): The position embedding dimension.
Default: -1.
position_magnitude (int): A multiplier acting on coord difference.
Default: 1.
kv_stride (int): The feature stride acting on key/value feature map.
Default: 2.
q_stride (int): The feature stride acting on query feature map.
Default: 1.
attention_type (str): A binary indicator string for indicating which
items in generalized empirical_attention module are used.
Default: '1111'.
- '1000' indicates 'query and key content' (appr - appr) item,
- '0100' indicates 'query content and relative position'
(appr - position) item,
- '0010' indicates 'key content only' (bias - appr) item,
- '0001' indicates 'relative position only' (bias - position) item.
"""
_abbr_ = 'gen_attention_block'
def __init__(self,
in_channels,
spatial_range=-1,
num_heads=9,
position_embedding_dim=-1,
position_magnitude=1,
kv_stride=2,
q_stride=1,
attention_type='1111'):
super(GeneralizedAttention, self).__init__()
# hard range means local range for non-local operation
self.position_embedding_dim = (
position_embedding_dim
if position_embedding_dim > 0 else in_channels)
self.position_magnitude = position_magnitude
self.num_heads = num_heads
self.in_channels = in_channels
self.spatial_range = spatial_range
self.kv_stride = kv_stride
self.q_stride = q_stride
self.attention_type = [bool(int(_)) for _ in attention_type]
self.qk_embed_dim = in_channels // num_heads
out_c = self.qk_embed_dim * num_heads
if self.attention_type[0] or self.attention_type[1]:
self.query_conv = nn.Conv2d(
in_channels=in_channels,
out_channels=out_c,
kernel_size=1,
bias=False)
self.query_conv.kaiming_init = True
if self.attention_type[0] or self.attention_type[2]:
self.key_conv = nn.Conv2d(
in_channels=in_channels,
out_channels=out_c,
kernel_size=1,
bias=False)
self.key_conv.kaiming_init = True
self.v_dim = in_channels // num_heads
self.value_conv = nn.Conv2d(
in_channels=in_channels,
out_channels=self.v_dim * num_heads,
kernel_size=1,
bias=False)
self.value_conv.kaiming_init = True
if self.attention_type[1] or self.attention_type[3]:
self.appr_geom_fc_x = nn.Linear(
self.position_embedding_dim // 2, out_c, bias=False)
self.appr_geom_fc_x.kaiming_init = True
self.appr_geom_fc_y = nn.Linear(
self.position_embedding_dim // 2, out_c, bias=False)
self.appr_geom_fc_y.kaiming_init = True
if self.attention_type[2]:
stdv = 1.0 / math.sqrt(self.qk_embed_dim * 2)
appr_bias_value = -2 * stdv * torch.rand(out_c) + stdv
self.appr_bias = nn.Parameter(appr_bias_value)
if self.attention_type[3]:
stdv = 1.0 / math.sqrt(self.qk_embed_dim * 2)
geom_bias_value = -2 * stdv * torch.rand(out_c) + stdv
self.geom_bias = nn.Parameter(geom_bias_value)
self.proj_conv = nn.Conv2d(
in_channels=self.v_dim * num_heads,
out_channels=in_channels,
kernel_size=1,
bias=True)
self.proj_conv.kaiming_init = True
self.gamma = nn.Parameter(torch.zeros(1))
if self.spatial_range >= 0:
# only works when non local is after 3*3 conv
if in_channels == 256:
max_len = 84
elif in_channels == 512:
max_len = 42
max_len_kv = int((max_len - 1.0) / self.kv_stride + 1)
local_constraint_map = np.ones(
(max_len, max_len, max_len_kv, max_len_kv), dtype=np.int)
for iy in range(max_len):
for ix in range(max_len):
local_constraint_map[
iy, ix,
max((iy - self.spatial_range) //
self.kv_stride, 0):min((iy + self.spatial_range +
1) // self.kv_stride +
1, max_len),
max((ix - self.spatial_range) //
self.kv_stride, 0):min((ix + self.spatial_range +
1) // self.kv_stride +
1, max_len)] = 0
self.local_constraint_map = nn.Parameter(
torch.from_numpy(local_constraint_map).byte(),
requires_grad=False)
if self.q_stride > 1:
self.q_downsample = nn.AvgPool2d(
kernel_size=1, stride=self.q_stride)
else:
self.q_downsample = None
if self.kv_stride > 1:
self.kv_downsample = nn.AvgPool2d(
kernel_size=1, stride=self.kv_stride)
else:
self.kv_downsample = None
self.init_weights()
def get_position_embedding(self,
h,
w,
h_kv,
w_kv,
q_stride,
kv_stride,
device,
dtype,
feat_dim,
wave_length=1000):
# the default type of Tensor is float32, leading to type mismatch
# in fp16 mode. Cast it to support fp16 mode.
h_idxs = torch.linspace(0, h - 1, h).to(device=device, dtype=dtype)
h_idxs = h_idxs.view((h, 1)) * q_stride
w_idxs = torch.linspace(0, w - 1, w).to(device=device, dtype=dtype)
w_idxs = w_idxs.view((w, 1)) * q_stride
h_kv_idxs = torch.linspace(0, h_kv - 1, h_kv).to(
device=device, dtype=dtype)
h_kv_idxs = h_kv_idxs.view((h_kv, 1)) * kv_stride
w_kv_idxs = torch.linspace(0, w_kv - 1, w_kv).to(
device=device, dtype=dtype)
w_kv_idxs = w_kv_idxs.view((w_kv, 1)) * kv_stride
# (h, h_kv, 1)
h_diff = h_idxs.unsqueeze(1) - h_kv_idxs.unsqueeze(0)
h_diff *= self.position_magnitude
# (w, w_kv, 1)
w_diff = w_idxs.unsqueeze(1) - w_kv_idxs.unsqueeze(0)
w_diff *= self.position_magnitude
feat_range = torch.arange(0, feat_dim / 4).to(
device=device, dtype=dtype)
dim_mat = torch.Tensor([wave_length]).to(device=device, dtype=dtype)
dim_mat = dim_mat**((4. / feat_dim) * feat_range)
dim_mat = dim_mat.view((1, 1, -1))
embedding_x = torch.cat(
((w_diff / dim_mat).sin(), (w_diff / dim_mat).cos()), dim=2)
embedding_y = torch.cat(
((h_diff / dim_mat).sin(), (h_diff / dim_mat).cos()), dim=2)
return embedding_x, embedding_y
def forward(self, x_input):
num_heads = self.num_heads
# use empirical_attention
if self.q_downsample is not None:
x_q = self.q_downsample(x_input)
else:
x_q = x_input
n, _, h, w = x_q.shape
if self.kv_downsample is not None:
x_kv = self.kv_downsample(x_input)
else:
x_kv = x_input
_, _, h_kv, w_kv = x_kv.shape
if self.attention_type[0] or self.attention_type[1]:
proj_query = self.query_conv(x_q).view(
(n, num_heads, self.qk_embed_dim, h * w))
proj_query = proj_query.permute(0, 1, 3, 2)
if self.attention_type[0] or self.attention_type[2]:
proj_key = self.key_conv(x_kv).view(
(n, num_heads, self.qk_embed_dim, h_kv * w_kv))
if self.attention_type[1] or self.attention_type[3]:
position_embed_x, position_embed_y = self.get_position_embedding(
h, w, h_kv, w_kv, self.q_stride, self.kv_stride,
x_input.device, x_input.dtype, self.position_embedding_dim)
# (n, num_heads, w, w_kv, dim)
position_feat_x = self.appr_geom_fc_x(position_embed_x).\
view(1, w, w_kv, num_heads, self.qk_embed_dim).\
permute(0, 3, 1, 2, 4).\
repeat(n, 1, 1, 1, 1)
# (n, num_heads, h, h_kv, dim)
position_feat_y = self.appr_geom_fc_y(position_embed_y).\
view(1, h, h_kv, num_heads, self.qk_embed_dim).\
permute(0, 3, 1, 2, 4).\
repeat(n, 1, 1, 1, 1)
position_feat_x /= math.sqrt(2)
position_feat_y /= math.sqrt(2)
# accelerate for saliency only
if (np.sum(self.attention_type) == 1) and self.attention_type[2]:
appr_bias = self.appr_bias.\
view(1, num_heads, 1, self.qk_embed_dim).\
repeat(n, 1, 1, 1)
energy = torch.matmul(appr_bias, proj_key).\
view(n, num_heads, 1, h_kv * w_kv)
h = 1
w = 1
else:
# (n, num_heads, h*w, h_kv*w_kv), query before key, 540mb for
if not self.attention_type[0]:
energy = torch.zeros(
n,
num_heads,
h,
w,
h_kv,
w_kv,
dtype=x_input.dtype,
device=x_input.device)
# attention_type[0]: appr - appr
# attention_type[1]: appr - position
# attention_type[2]: bias - appr
# attention_type[3]: bias - position
if self.attention_type[0] or self.attention_type[2]:
if self.attention_type[0] and self.attention_type[2]:
appr_bias = self.appr_bias.\
view(1, num_heads, 1, self.qk_embed_dim)
energy = torch.matmul(proj_query + appr_bias, proj_key).\
view(n, num_heads, h, w, h_kv, w_kv)
elif self.attention_type[0]:
energy = torch.matmul(proj_query, proj_key).\
view(n, num_heads, h, w, h_kv, w_kv)
elif self.attention_type[2]:
appr_bias = self.appr_bias.\
view(1, num_heads, 1, self.qk_embed_dim).\
repeat(n, 1, 1, 1)
energy += torch.matmul(appr_bias, proj_key).\
view(n, num_heads, 1, 1, h_kv, w_kv)
if self.attention_type[1] or self.attention_type[3]:
if self.attention_type[1] and self.attention_type[3]:
geom_bias = self.geom_bias.\
view(1, num_heads, 1, self.qk_embed_dim)
proj_query_reshape = (proj_query + geom_bias).\
view(n, num_heads, h, w, self.qk_embed_dim)
energy_x = torch.matmul(
proj_query_reshape.permute(0, 1, 3, 2, 4),
position_feat_x.permute(0, 1, 2, 4, 3))
energy_x = energy_x.\
permute(0, 1, 3, 2, 4).unsqueeze(4)
energy_y = torch.matmul(
proj_query_reshape,
position_feat_y.permute(0, 1, 2, 4, 3))
energy_y = energy_y.unsqueeze(5)
energy += energy_x + energy_y
elif self.attention_type[1]:
proj_query_reshape = proj_query.\
view(n, num_heads, h, w, self.qk_embed_dim)
proj_query_reshape = proj_query_reshape.\
permute(0, 1, 3, 2, 4)
position_feat_x_reshape = position_feat_x.\
permute(0, 1, 2, 4, 3)
position_feat_y_reshape = position_feat_y.\
permute(0, 1, 2, 4, 3)
energy_x = torch.matmul(proj_query_reshape,
position_feat_x_reshape)
energy_x = energy_x.permute(0, 1, 3, 2, 4).unsqueeze(4)
energy_y = torch.matmul(proj_query_reshape,
position_feat_y_reshape)
energy_y = energy_y.unsqueeze(5)
energy += energy_x + energy_y
elif self.attention_type[3]:
geom_bias = self.geom_bias.\
view(1, num_heads, self.qk_embed_dim, 1).\
repeat(n, 1, 1, 1)
position_feat_x_reshape = position_feat_x.\
view(n, num_heads, w*w_kv, self.qk_embed_dim)
position_feat_y_reshape = position_feat_y.\
view(n, num_heads, h * h_kv, self.qk_embed_dim)
energy_x = torch.matmul(position_feat_x_reshape, geom_bias)
energy_x = energy_x.view(n, num_heads, 1, w, 1, w_kv)
energy_y = torch.matmul(position_feat_y_reshape, geom_bias)
energy_y = energy_y.view(n, num_heads, h, 1, h_kv, 1)
energy += energy_x + energy_y
energy = energy.view(n, num_heads, h * w, h_kv * w_kv)
if self.spatial_range >= 0:
cur_local_constraint_map = \
self.local_constraint_map[:h, :w, :h_kv, :w_kv].\
contiguous().\
view(1, 1, h*w, h_kv*w_kv)
energy = energy.masked_fill_(cur_local_constraint_map,
float('-inf'))
attention = F.softmax(energy, 3)
proj_value = self.value_conv(x_kv)
proj_value_reshape = proj_value.\
view((n, num_heads, self.v_dim, h_kv * w_kv)).\
permute(0, 1, 3, 2)
out = torch.matmul(attention, proj_value_reshape).\
permute(0, 1, 3, 2).\
contiguous().\
view(n, self.v_dim * self.num_heads, h, w)
out = self.proj_conv(out)
# output is downsampled, upsample back to input size
if self.q_downsample is not None:
out = F.interpolate(
out,
size=x_input.shape[2:],
mode='bilinear',
align_corners=False)
out = self.gamma * out + x_input
return out
def init_weights(self):
for m in self.modules():
if hasattr(m, 'kaiming_init') and m.kaiming_init:
kaiming_init(
m,
mode='fan_in',
nonlinearity='leaky_relu',
bias=0,
distribution='uniform',
a=1)

Some files were not shown because too many files have changed in this diff Show More